import typing def _ceil_pow2(n: int) -> int: x = 0 while (1 << x) < n: x += 1 return x class SegTree: def __init__(self, op: typing.Callable[[typing.Any, typing.Any], typing.Any], e: typing.Any, v: typing.Union[int, typing.List[typing.Any]]) -> None: self._op = op self._e = e if isinstance(v, int): v = [e] * v self._n = len(v) self._log = _ceil_pow2(self._n) self._size = 1 << self._log self._d = [e] * (2 * self._size) for i in range(self._n): self._d[self._size + i] = v[i] for i in range(self._size - 1, 0, -1): self._update(i) def set(self, p: int, x: typing.Any) -> None: assert 0 <= p < self._n p += self._size self._d[p] = x for i in range(1, self._log + 1): self._update(p >> i) def get(self, p: int) -> typing.Any: assert 0 <= p < self._n return self._d[p + self._size] def prod(self, left: int, right: int) -> typing.Any: assert 0 <= left <= right <= self._n sml = self._e smr = self._e left += self._size right += self._size while left < right: if left & 1: sml = self._op(sml, self._d[left]) left += 1 if right & 1: right -= 1 smr = self._op(self._d[right], smr) left >>= 1 right >>= 1 return self._op(sml, smr) def all_prod(self) -> typing.Any: return self._d[1] def max_right(self, left: int, f: typing.Callable[[typing.Any], bool]) -> int: assert 0 <= left <= self._n assert f(self._e) if left == self._n: return self._n left += self._size sm = self._e first = True while first or (left & -left) != left: first = False while left % 2 == 0: left >>= 1 if not f(self._op(sm, self._d[left])): while left < self._size: left *= 2 if f(self._op(sm, self._d[left])): sm = self._op(sm, self._d[left]) left += 1 return left - self._size sm = self._op(sm, self._d[left]) left += 1 return self._n def min_left(self, right: int, f: typing.Callable[[typing.Any], bool]) -> int: assert 0 <= right <= self._n assert f(self._e) if right == 0: return 0 right += self._size sm = self._e first = True while first or (right & -right) != right: first = False right -= 1 while right > 1 and right % 2: right >>= 1 if not f(self._op(self._d[right], sm)): while right < self._size: right = 2 * right + 1 if f(self._op(self._d[right], sm)): sm = self._op(self._d[right], sm) right -= 1 return right + 1 - self._size sm = self._op(self._d[right], sm) return 0 def _update(self, k: int) -> None: self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1]) N, Q = map(int, input().split()) A = list(map(int, input().split())) queries = [] for _ in range(Q): _, l, r = map(int, input().split()) l -= 1 r -= 1 queries.append((l, r)) # 自身より右側で、かつ大きな値のうち最も左側のインデックス rights = [N] * N # デフォルトの行き先を右端にしておく segt = SegTree(max, 0, N) for i in reversed(range(N)): lo = i hi = N-1 ind = N while lo <= hi: m = (lo + hi) // 2 x = segt.prod(i, m+1) if x > A[i]: ind = min(ind, m) hi = m - 1 else: lo = m + 1 rights[i] = ind segt.set(i, A[i]) # for i in reversed(range(N)): # 右端からインデックスを決めていく # p = segt.max_right(i, lambda x: x <= A[i]) # rights[i] = p # segt.set(i, A[i]) # SZ = 32 doubling = [[N] * (N+1) for _ in range(SZ)] for i in range(N): doubling[0][i] = rights[i] for k in range(SZ-1): for i in range(N): doubling[k+1][i] = doubling[k][doubling[k][i]] for l, r in queries: res = 0 cur = l for i in reversed(range(SZ)): t = doubling[i][cur] if t <= r: cur = t res += pow(2, i) print(res+1)