from collections import deque, defaultdict, Counter from bisect import bisect_left, bisect_right from itertools import permutations, combinations from heapq import heappop, heappush import math, sys input = lambda: sys.stdin.readline().rstrip("\r\n") _int = lambda x: int(x)-1 MOD = 998244353 #10**9+7 INF = 1<<60 Yes, No = "Yes", "No" # https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, TypeVar Type = TypeVar('Type') class SortedMultiset(Generic[Type]): BUCKET_RATIO = 16 SPLIT_RATIO = 24 def __init__(self, a: Iterable[Type] = []) -> None: # Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N) a = list(a) n = self.size = len(a) if any(a[i] > a[i + 1] for i in range(n - 1)): a.sort() num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO))) self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)] def __iter__(self) -> Iterator[Type]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[Type]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return 'SortedMultiset' + str(self.a) def __str__(self) -> str: s = str(list(self)) return '{' + s[1 : len(s) - 1] + '}' def _position(self, x: Type) -> tuple[list[Type], int, int]: # return the bucket, index of the bucket and position in which x should be. self must not be empty. for i, a in enumerate(self.a): if x <= a[-1]: break return (a, i, bisect_left(a, x)) def __contains__(self, x: Type) -> bool: if self.size == 0: return False a, _, i = self._position(x) return i != len(a) and a[i] == x def count(self, x: Type) -> int: # Count the number of x. return self.index_right(x) - self.index(x) def add(self, x: Type) -> None: # Add an element. / O(√N) if self.size == 0: self.a = [[x]] self.size = 1 return a, b, i = self._position(x) a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.SPLIT_RATIO: mid = len(a) >> 1 self.a[b:b+1] = [a[:mid], a[mid:]] def _pop(self, a: list[Type], b: int, i: int) -> Type: ans = a.pop(i) self.size -= 1 if not a: del self.a[b] return ans def discard(self, x: Type) -> bool: # Remove an element and return True if removed. / O(√N) if self.size == 0: return False a, b, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, b, i) return True def lt(self, x: Type) -> Type | None: # Find the largest element < x, or None if it doesn't exist. for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: Type) -> Type | None: # Find the largest element <= x, or None if it doesn't exist. for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: Type) -> Type | None: # Find the smallest element > x, or None if it doesn't exist. for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: Type) -> Type | None: # Find the smallest element >= x, or None if it doesn't exist. for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> Type: # Return the i-th element. if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> Type: # Pop and return the i-th element. if i < 0: for b, a in enumerate(reversed(self.a)): i += len(a) if i >= 0: return self._pop(a, ~b, i) else: for b, a in enumerate(self.a): if i < len(a): return self._pop(a, b, i) i -= len(a) raise IndexError def index(self, x: Type) -> int: # Count the number of elements < x. ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: Type) -> int: # Count the number of elements <= x. ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans for _ in range(int(input())): N, M, K, P = map(int, input().split()) T = list(map(int, input().split())) C = list(map(int, input().split())) B = list(map(int, input().split())) D = list(map(int, input().split())) S = list(map(int, input().split())) KA = [[] for _ in range(K)] for i in range(N): KA[C[i]-1].append(T[i]) KB = [[] for _ in range(K)] for i in range(M): KB[D[i]-1].append(B[i]) def check(m): Set = SortedMultiset(T) ret = 0 for i in range(K): for a in KA[i]: Set.discard(a) Set.add(a-S[i]) for b in KB[i]: ret += Set.index_right(m-b) for a in KA[i]: Set.discard(a-S[i]) Set.add(a) return ret < P def calc(m): Set = SortedMultiset([(T[i], 0) for i in range(N)]) ok = False for i in range(K): for a in KA[i]: Set.discard((a, 0)) Set.add((a-S[i], 1)) for b in KB[i]: if (m-b, 0) in Set: reta = m-b retb = b elif (m-b, 1) in Set: reta = m-b+S[i] retb = b else: continue ok = True if ok: break for a in KA[i]: Set.discard((a-S[i], 1)) Set.add((a, 0)) # print(reta, retb) for i in range(N): if reta == T[i]: resi = i+1 break for j in range(M): if retb == B[j]: resj = j+1 break return resi, resj l, r = -1, 10**10 while r-l > 1: m = (l+r)//2 if check(m): l = m else: r = m # print(l, r) ans = calc(r) print(*ans)