#include #include #include #include #include #include #include #include #include #include // #include "Src/Number/IntegerDivision.hpp" #include #include namespace zawa { using i16 = std::int16_t; using i32 = std::int32_t; using i64 = std::int64_t; using i128 = __int128_t; using u8 = std::uint8_t; using u16 = std::uint16_t; using u32 = std::uint32_t; using u64 = std::uint64_t; using usize = std::size_t; } // namespace zawa #include #include #include namespace zawa { namespace internal { template T MidPoint(T a, T b) { if (a > b) std::swap(a, b); return a + ((b - a) >> 1); } template T Abs(T a, T b) { return (a >= b ? a - b : b - a); } } // namespace zawa::internal template T BinarySearch(T ok, T ng, const Function& f) { static_assert(std::is_integral_v, "T must be integral type"); static_assert(std::is_convertible_v>, "f must be function bool(T)"); while (internal::Abs(ok, ng) > 1) { T mid{ internal::MidPoint(ok, ng) }; (f(mid) ? ok : ng) = mid; } return ok; } template T BinarySearch(T ok, T ng, const Function& f, u32 upperLimit) { static_assert(std::is_signed_v, "T must be signed arithmetic type"); static_assert(std::is_convertible_v>, "f must be function bool(T)"); for (u32 _{} ; _ < upperLimit ; _++) { T mid{ (ok + ng) / (T)2 }; (f(mid) ? ok : ng) = mid; } return ok; } } // namespace zawa // #include "Src/Sequence/CompressedSequence.hpp" // #include "Src/Sequence/RunLengthEncoding.hpp" // #include "Src/Algebra/Group/AdditiveGroup.hpp" // #include "Src/DataStructure/FenwickTree/FenwickTree.hpp" // #include "Src/DataStructure/SegmentTree/SegmentTree.hpp" // #include "Src/DataStructure/DisjointSetUnion/DisjointSetUnion.hpp" // #include "Src/DataStructure/Heap/BinaryHeap.hpp" namespace zawa {} using namespace zawa; #ifdef _MSC_VER #include #endif #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m` explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned long long y = x * _m; return (unsigned int)(z - y + (z < y ? _m : 0)); } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template constexpr int primitive_root = primitive_root_constexpr(m); // @param n `n < 2^32` // @param m `1 <= m < 2^32` // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64) unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; // y_max < m * (n + 1) // floor(y_max / m) <= n n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { #ifndef _MSC_VER template using is_signed_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_unsigned_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using make_unsigned_int128 = typename std::conditional::value, __uint128_t, unsigned __int128>; template using is_integral = typename std::conditional::value || is_signed_int128::value || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using is_signed_int = typename std::conditional<(is_integral::value && std::is_signed::value) || is_signed_int128::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional<(is_integral::value && std::is_unsigned::value) || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional< is_signed_int128::value, make_unsigned_int128, typename std::conditional::value, std::make_unsigned, std::common_type>::type>::type; #else template using is_integral = typename std::is_integral; template using is_signed_int = typename std::conditional::value && std::is_signed::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional::value && std::is_unsigned::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional::value, std::make_unsigned, std::common_type>::type; #endif template using is_signed_int_t = std::enable_if_t::value>; template using is_unsigned_int_t = std::enable_if_t::value>; template using to_unsigned_t = typename to_unsigned::type; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template using is_modint = std::is_base_of; template using is_modint_t = std::enable_if_t::value>; } // namespace internal template * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime; }; template struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template internal::barrett dynamic_modint::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template using is_static_modint = std::is_base_of; template using is_static_modint_t = std::enable_if_t::value>; template struct is_dynamic_modint : public std::false_type {}; template struct is_dynamic_modint> : public std::true_type {}; template using is_dynamic_modint_t = std::enable_if_t::value>; } // namespace internal } // namespace atcoder using mint = atcoder::modint998244353; // #include // #include // #include // #include // #include // #include // #include // #include // #include // #include // #include // #include // #include // #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") using namespace std; template ostream& operator<<(ostream& os, const pair& p) { os << '(' << p.first << ',' << p.second << ')'; return os; } template ostream& operator<<(ostream& os, const vector& v) { for (int i = 0 ; i < ssize(v) ; i++) os << v[i] << (i + 1 == ssize(v) ? "" : " "); return os; } using Z = __int128_t; Z gcd(Z a, Z b) { return b == 0 ? a : gcd(b, a % b); } struct Frac { Z n = 0, d = 1; Frac() = default; Frac(Z v) : n{v}, d{1} {} Frac(Z num, Z den) : n{num}, d{den} { assert(d != 0); Z g = gcd(n, d); n /= g; d /= g; if (n < 0 and d < 0) { n *= -1; d *= -1; } } Frac abs() const { if (n == 0) return *this; if (n > 0 and d > 0) return *this; if (n < 0 and d < 0) return *this; return Frac{-n,d}; } long double convertDouble() const { return (long double)n / (long double)d; } mint convert() const { return mint{n%mint::mod()} / mint{d%mint::mod()}; } }; ostream& operator<<(ostream& os, Z v) { string s; bool sign = v < 0; while (v) { s += '0' + v % 10; v /= 10; } if (s.empty()) s += '0'; if (sign) s += '-'; ranges::reverse(s); os << s; return os; } ostream& operator<<(ostream& os, Frac f) { os << f.n << '/' << f.d; return os; } bool operator<(const Frac& i, const Frac& j) { return i.n * j.d < j.n * i.d; } Frac operator+(const Frac& i, const Frac& j) { return Frac{i.n*j.d + j.n*i.d, i.d*j.d}; } Frac operator-(const Frac& i, const Frac& j) { return Frac{i.n*j.d - j.n*i.d, i.d*j.d}; } Frac operator*(const Frac& i, const Frac& j) { return Frac{i.n*j.n,i.d*j.d}; } bool operator==(const Frac& i, const Frac& j) { return i.n * j.d == j.n * i.d; } pair f(Z a, Z b, Z c, Z p, Z q, Z r) { assert(c < r); Frac t{-r, c - r}; assert(Frac{0} < t); Frac x = Frac{p} + t * Frac{a - p}; Frac y = Frac{q} + t * Frac{b - q}; return {x, y}; } mint triangle(pair a, pair b, pair c) { b.first = b.first - a.first; b.second = b.second - a.second; c.first = c.first - a.first; c.second = c.second - a.second; // cout << b.first << ' ' << b.second << "b:c" << c.first << ' ' << c.second << endl; if (Frac{b.first*c.second}.convertDouble() < Frac{b.second*c.first}.convertDouble()) swap(b, c); // Frac v = Frac{b.first * c.second - b.second * c.first}.abs(); // return mint{v.n%mint::mod()} / mint{v.d%mint::mod()} / mint::raw(2); return mint{Frac{b.first*c.second}.convert()-Frac{b.second*c.first}.convert()} / mint::raw(2); } mint solve() { long long p[4][3]; for (int i = 0 ; i < 4 ; i++) for (int j = 0 ; j < 3 ; j++) cin >> p[i][j]; pair ps[3]; for (int i = 0 ; i < 3 ; i++) ps[i] = f(p[i][0],p[i][1],p[i][2],p[3][0],p[3][1],p[3][2]); // cout << ps[0] << ps[1] << ps[2] << endl; return triangle(ps[0],ps[1],ps[2]); } int main() { cin.tie(0); cout.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(20); #if !defined DEBUG int T; cin >> T; while (T--) cout << solve().val() << '\n'; #else mt19937 mt{random_device{}()}; for (int testcase = 0 ; ; ) { cerr << "----------" << ++testcase << "----------" << endl; auto a = solve(), b = naive(); if (a != b) { // print testcase cerr << "you: " << a << endl; cout << "correct: " << b << endl; exit(0); } } #endif }