#line 1 "c.cpp" #include #include using namespace std; #line 2 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp" #line 6 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp" #include #line 9 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" #line 7 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" namespace noya2::internal { template struct csr { csr () {} csr (int _n) : n(_n) {} csr (int _n, int m) : n(_n){ start.reserve(m); elist.reserve(m); } // ACL style constructor (do not have to call build) csr (int _n, const std::vector> &idx_elem) : n(_n), start(_n + 2), elist(idx_elem.size()) { for (auto &[i, e] : idx_elem){ start[i + 2]++; } for (int i = 1; i < n; i++){ start[i + 2] += start[i + 1]; } for (auto &[i, e] : idx_elem){ elist[start[i + 1]++] = e; } prepared = true; } int add(int idx, E elem){ int eid = start.size(); start.emplace_back(idx); elist.emplace_back(elem); return eid; } void build(){ if (prepared) return ; int m = start.size(); std::vector nelist(m); std::vector nstart(n + 2, 0); for (int i = 0; i < m; i++){ nstart[start[i] + 2]++; } for (int i = 1; i < n; i++){ nstart[i + 2] += nstart[i + 1]; } for (int i = 0; i < m; i++){ nelist[nstart[start[i] + 1]++] = elist[i]; } swap(elist,nelist); swap(start,nstart); prepared = true; } const auto operator[](int idx) const { return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]); } auto operator[](int idx){ return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]); } const auto operator()(int idx, int l, int r) const { return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r); } auto operator()(int idx, int l, int r){ return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r); } size_t size() const { return n; } int n; std::vector start; std::vector elist; bool prepared = false; }; } // namespace noya2::internal #line 11 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp" namespace noya2 { struct hld_tree { int n, root; bool build_ok = false; std::vector down, nxt, sub, tour; noya2::internal::csr childs; // default constructor (nop) hld_tree () {} // tree with _n node // after construct, call input_edges / input_parents / add_edge _n - 1 times hld_tree (int _n, int _root = 0) : n(_n), root(_root), down(n), nxt(n), sub(n, 1), tour(n) { if (n == 1){ nxt[0] = -1; down[0] = -1; build_from_parents(); } } // par[i] < i, par[0] == -1 hld_tree (const std::vector &par) : n(par.size()), root(0), down(n, -1), nxt(par), sub(n, 1), tour(n){ build_from_parents(); } // par[i] < i, par[0] == -1 hld_tree (std::vector &&par) : n(par.size()), root(0), down(n, -1), sub(n, 1), tour(n) { nxt.swap(par); build_from_parents(); } // distinct unweighted undirected n - 1 edges of tree hld_tree (const std::vector> &es, int _root = 0) : n(es.size() + 1), root(_root), down(n), nxt(n), sub(n, 1), tour(n) { for (auto &[u, v] : es){ down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; } build_from_edges(); } // input parents from cin template void input_parents(){ using std::cin; nxt[0] = -1; down[0] = -1; for (int u = 1; u < n; u++){ cin >> nxt[u]; nxt[u] -= indexed; down[u] = -1; } build_from_parents(); } // input n - 1 edges from cin template void input_edges(){ if (n == 1) return ; using std::cin; for (int i = 1; i < n; i++){ int u, v; cin >> u >> v; u -= indexed; v -= indexed; down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; } build_from_edges(); } void add_edge(int u, int v){ down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; // use tour[0] as counter if (++tour[0] == n - 1){ build_from_edges(); } } size_t size() const { return n; } // top vertex of heavy path which contains v int leader(int v) const { return nxt[v] < 0 ? v : nxt[v]; } // level ancestor // ret is ancestor of v, dist(ret, v) == d // if d > depth(v), return -1 int la(int v, int d) const { while (v != -1){ int u = leader(v); if (down[v] - d >= down[u]){ v = tour[down[v] - d]; break; } d -= down[v] - down[u] + 1; v = (u == root ? -1 : ~nxt[u]); } return v; } // lowest common ancestor of u and v int lca(int u, int v) const { int du = down[u], dv = down[v]; if (du > dv){ std::swap(du, dv); std::swap(u, v); } if (dv < du + sub[u]){ return u; } while (du < dv){ v = ~nxt[leader(v)]; dv = down[v]; } return v; } // distance from u to v int dist(int u, int v) const { int _dist = 0; while (leader(u) != leader(v)){ if (down[u] > down[v]) std::swap(u, v); _dist += down[v] - down[leader(v)] + 1; v = ~nxt[leader(v)]; } _dist += std::abs(down[u] - down[v]); return _dist; } // d times move from to its neighbor (direction of to) // if d > dist(from, to), return -1 int jump(int from, int to, int d) const { int _from = from, _to = to; int dist_from_lca = 0, dist_to_lca = 0; while (leader(_from) != leader(_to)){ if (down[_from] > down[_to]){ dist_from_lca += down[_from] - down[leader(_from)] + 1; _from = ~nxt[leader(_from)]; } else { dist_to_lca += down[_to] - down[leader(_to)] + 1; _to = ~nxt[leader(_to)]; } } if (down[_from] > down[_to]){ dist_from_lca += down[_from] - down[_to]; } else { dist_to_lca += down[_to] - down[_from]; } if (d <= dist_from_lca){ return la(from, d); } d -= dist_from_lca; if (d <= dist_to_lca){ return la(to, dist_to_lca - d); } return -1; } // parent of v (if v is root, return -1) int parent(int v) const { if (v == root) return -1; return (nxt[v] < 0 ? ~nxt[v] : tour[down[v] - 1]); } // visiting time in euler tour // usage : seg.set(index(v), X[v]) int index(int vertex) const { return down[vertex]; } // usage : seg.set(index_edge(e.u, e.v), e.val) int index(int vertex1, int vertex2) const { return std::max(down[vertex1], down[vertex2]); } // subtree size of v int subtree_size(int v) const { return sub[v]; } // prod in subtree v : seg.prod(subtree_l(v), subtree_r(v)) int subtree_l(int v) const { return down[v]; } int subtree_r(int v) const { return down[v] + sub[v]; } // v is in subtree r bool is_in_subtree(int r, int v) const { return subtree_l(r) <= subtree_l(v) && subtree_r(v) <= subtree_r(r); } // distance table from s std::vector dist_table(int s) const { std::vector table(n, -1); table[s] = 0; while (s != root){ table[parent(s)] = table[s] + 1; s = parent(s); } for (int v : tour){ if (table[v] == -1){ table[v] = table[parent(v)] + 1; } } return table; } // dist, v1, v2 std::tuple diameter() const { std::vector dep = dist_table(root); int v1 = std::ranges::max_element(dep) - dep.begin(); std::vector fromv1 = dist_table(v1); int v2 = std::ranges::max_element(fromv1) - fromv1.begin(); return {fromv1[v2], v1, v2}; } // vertex array {from, ..., to} std::vector path(int from, int to) const { int d = dist(from, to); std::vector _path(d + 1); int front = 0, back = d; while (from != to){ if (down[from] > down[to]){ _path[front++] = from; from = parent(from); } else { _path[back--] = to; to = parent(to); } } _path[front] = from; return _path; } // path decomposition and query (vertex weighted) // if l < r, decsending order tour[l, r) // if l > r, acsending order tour(l, r] template void path_query(int u, int v, auto f) const { while (leader(u) != leader(v)){ if (down[u] < down[v]){ f(down[leader(v)], down[v] + 1); v = ~nxt[leader(v)]; } else { f(down[u] + 1, down[leader(u)]); u = ~nxt[leader(u)]; } } if constexpr (vertex){ if (down[u] < down[v]){ f(down[u], down[v] + 1); } else { f(down[u] + 1, down[v]); } } else { if (down[u] != down[v]){ f(down[u] + 1, down[v] + 1); } } } // {parent, mapping} : cptree i is correspond to tree mapping[i]. parent[i] is parent of i in cptree. // parent[i] < i, parent[0] == -1 std::pair, std::vector> compressed_tree(std::vector vs) const { if (vs.empty()){ return {{},{}}; } auto comp = [&](int l, int r){ return down[l] < down[r]; }; std::ranges::sort(vs, comp); int sz = vs.size(); vs.reserve(2*sz); for (int i = 0; i < sz-1; i++){ vs.emplace_back(lca(vs[i], vs[i+1])); } std::sort(vs.begin() + sz, vs.end(), comp); std::ranges::inplace_merge(vs, vs.begin() + sz, comp); auto del = std::ranges::unique(vs); vs.erase(del.begin(), del.end()); sz = vs.size(); std::stack st; std::vector par(sz); par[0] = -1; st.push(0); for (int i = 1; i < sz; i++){ while (!is_in_subtree(vs[st.top()], vs[i])) st.pop(); par[i] = st.top(); st.push(i); } return {par, vs}; } //* CSR // build csr for using operator() // g(v).front() : heady child of v void build_csr(){ childs = noya2::internal::csr(n, n - 1); for (int v = 0; v < n; v++){ if (v == root) continue; if (leader(v) != v){ childs.add(parent(v),v); } } for (int v = 0; v < n; v++){ if (v == root) continue; if (leader(v) == v){ childs.add(parent(v),v); } } childs.build(); } const auto operator()(int v) const { return childs[v]; } auto operator()(int v){ return childs[v]; } //*/ // hld_tree g; // euler tour order : `for (int v : g)` // with range_adaptor : `for (int v : g | std::views::reverse)` // bottom-up DP : `for (int v : g | std::views::drop(1) | std::views::reverse){ update dp[g.parent(v)] by dp[v] }` auto begin() const { return tour.begin(); } auto end() const { return tour.end(); } private: // nxt[v] : parent of v, nxt[0] == -1 void build_from_parents(){ if (n == 1){ down[0] = 0; nxt[0] = -1; sub[0] = 1; tour[0] = 0; return ; } for (int u = n - 1; u >= 1; u--){ int v = nxt[u]; sub[v] += sub[u]; down[v] = std::max(down[v], sub[u]); } for (int u = n - 1; u >= 1; u--){ int v = nxt[u]; if (down[v] == sub[u]){ sub[u] = ~sub[u]; down[v] = ~down[v]; } } sub[0] = ~down[0] + 1; down[0] = 0; for (int u = 1; u < n; u++){ int v = nxt[u]; int nsub = ~down[u] + 1; if (sub[u] < 0){ down[u] = down[v] + 1; nxt[u] = (nxt[v] < 0 ? v : nxt[v]); } else { down[u] = down[v] + sub[v]; sub[v] += sub[u]; nxt[u] = ~v; } sub[u] = nsub; } for (int u = 0; u < n; u++){ tour[down[u]] = u; } build_ok = true; } // down[v] : degree of v // nxt[v] : xor prod of neighbor of v void build_from_edges(){ // use tour as queue int back = 0; for (int u = 0; u < n; u++){ if (u != root && down[u] == 1){ tour[back++] = u; } } for (int front = 0; front < n - 1; front++){ int u = tour[front]; down[u] = -1; int v = nxt[u]; // parent of v nxt[v] ^= u; if (--down[v] == 1 && v != root){ tour[back++] = v; } } // check : now, tour is reverse of topological order tour.pop_back(); // check : now, down[*] <= 1 for (int u : tour){ int v = nxt[u]; // subtree size (initialized (1,1,...,1)) sub[v] += sub[u]; // heaviest subtree of its child down[v] = std::max(down[v], sub[u]); } for (int u : tour){ int v = nxt[u]; // whether u is not the top of heavy path if (down[v] == sub[u]){ sub[u] = ~sub[u]; down[v] = ~down[v]; } } // after appearing v as u (or v == root), // down[v] is the visiting time of euler tour // nxt[v] is the lowest vertex of heavy path which contains v // (if v itself, nxt[v] is ~(parent of v)) // sub[v] + down[v] is the light child's starting time of euler tour // note : heavy child's visiting time of euler tour is (the time of its parent) + 1 sub[root] = ~down[root] + 1; down[root] = 0; nxt[root] = -1; for (int u : tour | std::views::reverse){ int v = nxt[u]; int nsub = ~down[u] + 1; // heavy child if (sub[u] < 0){ down[u] = down[v] + 1; nxt[u] = (nxt[v] < 0 ? v : nxt[v]); } // light child else { down[u] = down[v] + sub[v]; sub[v] += sub[u]; nxt[u] = ~v; } sub[u] = nsub; } // tour is inverse permutation of down tour.push_back(0); for (int u = 0; u < n; u++){ tour[down[u]] = u; } build_ok = true; } }; } // namespace noya2 #line 6 "c.cpp" int input(){ int x = 0; char c; while ((c = getchar_unlocked() ^ 48) < 10){ x = x * 10 + c; } return x; } struct S { int ldep, lmi, mmi, rdep, rmi, ans; }; S op(S a, S b){ if (a.ans == -1) return b; if (b.ans == -1) return a; S c; if (a.ans == -2){ if (b.ans == -2){ c = a; if (c.lmi > b.lmi){ c.lmi = b.lmi; } } else { c = b; if (c.lmi > a.lmi){ c.lmi = a.lmi; } } } else { if (b.ans == -2){ c = a; if (c.rmi > b.lmi){ c.rmi = b.lmi; } } else { c.ldep = a.ldep; c.lmi = a.lmi; c.mmi = min({a.mmi, b.mmi, a.rmi, b.lmi}); c.rdep = b.rdep; c.rmi = b.rmi; c.ans = a.ans + b.ans + a.rdep + b.ldep - 2 * min(a.rmi, b.lmi); } } return c; } S e(){ return {0,0,0,0,0,-1}; } const int iinf = 1e9; int main(){ cin.tie(0)->sync_with_stdio(0); int n = input(); noya2::hld_tree g(n); for (int i = 1; i < n; i++){ int u = input(); u--; int v = input(); v--; g.add_edge(u, v); } auto dep = g.dist_table(0); vector col(n); auto single = [&](int v) -> S { if (col[v]){ return S{dep[v],dep[v]-1,iinf,dep[v],dep[v],0}; } else { return S{-1,dep[v]-1,iinf,-1,dep[v],-2}; } }; atcoder::segtree segoff([&]{ vector ret(n); for (int v = 0; v < n; v++){ ret[g.index(v)] = single(v); } return ret; }()); for (int i = 0; i < n; i++){ col[i] = input(); } atcoder::segtree seg([&]{ vector ret(n); for (int v = 0; v < n; v++){ ret[g.index(v)] = single(v); } return ret; }()); auto eval = [&](S a) -> int { if (a.ans < 0) return 0; int ans = a.ans; if (a.mmi != iinf){ ans += a.ldep + a.rdep - 2 * a.mmi; } else { assert(ans == 0); } assert(ans % 2 == 0); ans /= 2; return ans + 1; }; auto query = [&](int x, int y){ if (!g.is_in_subtree(y, x)){ S prd = seg.prod(g.subtree_l(y), g.subtree_r(y)); return eval(prd); } if (x == y){ S prd = seg.all_prod(); return eval(prd); } int z = g.jump(y, x, 1); int l = g.subtree_l(z), r = g.subtree_r(z); S prd = op(seg.prod(0, l), op(segoff.prod(l, r), seg.prod(r, n))); return eval(prd); }; int q = input(); while (q--){ int t = input(); if (t == 1){ int v = input(); v--; col[v] = !col[v]; seg.set(g.index(v), single(v)); } else { int x = input(); x--; int y = input(); y--; int ans = query(x, y); cout << ans << '\n'; } } }