#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using lint = long long; using pint = pair; using plint = pair; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template std::pair operator+(const std::pair &l, const std::pair &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template std::pair operator-(const std::pair &l, const std::pair &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template std::vector sort_unique(std::vector vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template int arglb(const std::vector &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template int argub(const std::vector &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template IStream &operator>>(IStream &is, std::vector &vec) { for (auto &v : vec) is >> v; return is; } template OStream &operator<<(OStream &os, const std::vector &vec); template OStream &operator<<(OStream &os, const std::array &arr); template OStream &operator<<(OStream &os, const std::unordered_set &vec); template OStream &operator<<(OStream &os, const pair &pa); template OStream &operator<<(OStream &os, const std::deque &vec); template OStream &operator<<(OStream &os, const std::set &vec); template OStream &operator<<(OStream &os, const std::multiset &vec); template OStream &operator<<(OStream &os, const std::unordered_multiset &vec); template OStream &operator<<(OStream &os, const std::pair &pa); template OStream &operator<<(OStream &os, const std::map &mp); template OStream &operator<<(OStream &os, const std::unordered_map &mp); template OStream &operator<<(OStream &os, const std::tuple &tpl); template OStream &operator<<(OStream &os, const std::vector &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template OStream &operator<<(OStream &os, const std::array &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template std::istream &operator>>(std::istream &is, std::tuple &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template OStream &operator<<(OStream &os, const std::tuple &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template OStream &operator<<(OStream &os, const std::unordered_set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::deque &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template OStream &operator<<(OStream &os, const std::set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::unordered_multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::pair &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template OStream &operator<<(OStream &os, const std::map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::unordered_map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_CYAN = "\033[1;36m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif #include #include // lowest common ancestor (LCA) for undirected weighted tree template struct UndirectedWeightedTree { int INVALID = -1; int V, lgV; int E; int root; std::vector>> adj; // (nxt_vertex, edge_id) // vector edge; // edges[edge_id] = (vertex_id, vertex_id) std::vector weight; // w[edge_id] std::vector par; // parent_vertex_id[vertex_id] std::vector depth; // depth_from_root[vertex_id] std::vector acc_weight; // w_sum_from_root[vertex_id] void _fix_root_dfs(int now, int prv, int prv_edge_id) { par[now] = prv; if (prv_edge_id != INVALID) acc_weight[now] = acc_weight[prv] + weight[prv_edge_id]; for (auto nxt : adj[now]) if (nxt.first != prv) { depth[nxt.first] = depth[now] + 1; _fix_root_dfs(nxt.first, now, nxt.second); } } UndirectedWeightedTree() = default; UndirectedWeightedTree(int N) : V(N), E(0), adj(N) { lgV = 1; while (1 << lgV < V) lgV++; } void add_edge(int u, int v, T w) { adj[u].emplace_back(v, E); adj[v].emplace_back(u, E); // edge.emplace_back(u, v); weight.emplace_back(w); E++; } std::vector> doubling; void _doubling_precalc() { doubling.assign(lgV, std::vector(V)); doubling[0] = par; for (int d = 0; d < lgV - 1; d++) for (int i = 0; i < V; i++) { if (doubling[d][i] == INVALID) doubling[d + 1][i] = INVALID; else doubling[d + 1][i] = doubling[d][doubling[d][i]]; } } void fix_root(int r) { root = r; par.resize(V); depth.resize(V); depth[r] = 0; acc_weight.resize(V); acc_weight[r] = 0; _fix_root_dfs(root, INVALID, INVALID); _doubling_precalc(); } int kth_parent(int x, int k) const { if (depth[x] < k) return INVALID; for (int d = 0; d < lgV; d++) { if (x == INVALID) return INVALID; if (k & (1 << d)) x = doubling[d][x]; } return x; } int lowest_common_ancestor(int u, int v) const { if (depth[u] > depth[v]) std::swap(u, v); v = kth_parent(v, depth[v] - depth[u]); if (u == v) return u; for (int d = lgV - 1; d >= 0; d--) { if (doubling[d][u] != doubling[d][v]) u = doubling[d][u], v = doubling[d][v]; } return par[u]; } T path_length(int u, int v) const { // Not distance, but the sum of weights int r = lowest_common_ancestor(u, v); return (acc_weight[u] - acc_weight[r]) + (acc_weight[v] - acc_weight[r]); } int s_to_t_by_k_steps(int s, int t, int k) const { int l = lowest_common_ancestor(s, t); int dsl = depth[s] - depth[l], dtl = depth[t] - depth[l]; if (k > dsl + dtl) { return INVALID; } else if (k < dsl) { return kth_parent(s, k); } else if (k == dsl) { return l; } else { return kth_parent(t, dsl + dtl - k); } } }; #include #include #include // Sorted set of integers [0, n) // Space complexity: (64 / 63) n + O(log n) bit class fast_set { static constexpr int B = 64; int n; int cnt; std::vector> _d; static int bsf(uint64_t x) { return __builtin_ctzll(x); } static int bsr(uint64_t x) { return 63 - __builtin_clzll(x); } public: // 0 以上 n_ 未満の整数が入れられる sorted set を作成 fast_set(int n_) : n(n_), cnt(0) { do { n_ = (n_ + B - 1) / B, _d.push_back(std::vector(n_)); } while (n_ > 1); } bool contains(int i) const { assert(0 <= i and i < n); return (_d.front().at(i / B) >> (i % B)) & 1; } void insert(int i) { assert(0 <= i and i < n); if (contains(i)) return; ++cnt; for (auto &vec : _d) { bool f = vec.at(i / B); vec.at(i / B) |= 1ULL << (i % B), i /= B; if (f) break; } } void erase(int i) { assert(0 <= i and i < n); if (!contains(i)) return; --cnt; for (auto &vec : _d) { vec.at(i / B) &= ~(1ULL << (i % B)), i /= B; if (vec.at(i)) break; } } // i 以上の最小要素 なければ default_val int next(int i, const int default_val) const { assert(0 <= i and i <= n); for (auto itr = _d.cbegin(); itr != _d.cend(); ++itr, i = i / B + 1) { if (i / B >= int(itr->size())) break; if (auto d = itr->at(i / B) >> (i % B); d) { i += bsf(d); while (itr != _d.cbegin()) i = i * B + bsf((--itr)->at(i)); return i; } } return default_val; } int next(const int i) const { return next(i, n); } // i 以下の最小要素 なければ default_val int prev(int i, int default_val = -1) const { assert(-1 <= i and i < n); for (auto itr = _d.cbegin(); itr != _d.cend() and i >= 0; ++itr, i = i / B - 1) { if (auto d = itr->at(i / B) << (B - 1 - i % B); d) { i += bsr(d) - (B - 1); while (itr != _d.cbegin()) i = i * B + bsr((--itr)->at(i)); return i; } } return default_val; } // return minimum element (if exists) or `n` (empty) int min() const { return next(0); } // return maximum element (if exists) or `-1` (empty) int max() const { return prev(n - 1); } int size() const { return cnt; } bool empty() const { return cnt == 0; } void clear() { if (!cnt) return; cnt = 0; auto rec = [&](auto &&self, int d, int x) -> void { if (d) { for (auto m = _d.at(d).at(x); m;) { int i = bsf(m); m -= 1ULL << i, self(self, d - 1, x * B + i); } } _d.at(d).at(x) = 0; }; rec(rec, _d.size() - 1, 0); } }; #include #include #include // Range Minimum Query for static sequence by sparse table // Complexity: (N \log N)$ for precalculation, (1)$ per query template struct StaticRMQ { inline T func(const T &l, const T &r) const noexcept { return std::min(l, r); } int N, lgN; T defaultT; std::vector> data; std::vector lgx_table; StaticRMQ() = default; StaticRMQ(const std::vector &sequence, T defaultT) : N(sequence.size()), defaultT(defaultT) { lgx_table.resize(N + 1); for (int i = 2; i < N + 1; i++) lgx_table[i] = lgx_table[i >> 1] + 1; lgN = lgx_table[N] + 1; data.assign(lgN, std::vector(N, defaultT)); data[0] = sequence; for (int d = 1; d < lgN; d++) { for (int i = 0; i + (1 << d) <= N; i++) { data[d][i] = func(data[d - 1][i], data[d - 1][i + (1 << (d - 1))]); } } } T get(int l, int r) const { // [l, r), 0-indexed assert(l >= 0 and r <= N); if (l >= r) return defaultT; int d = lgx_table[r - l]; return func(data[d][l], data[d][r - (1 << d)]); } }; #include #include #include #include struct TreeLCA { const int N; std::vector> to; int root; TreeLCA(int V = 0) : N(V), to(V), root(-1) {} void add_edge(int u, int v) { assert(0 <= u and u < N); assert(0 <= v and v < N); assert(u != v); to[u].push_back(v); to[v].push_back(u); } using P = std::pair; std::vector subtree_begin; std::vector

vis_order; std::vector depth; void _build_dfs(int now, int prv, int dnow) { subtree_begin[now] = vis_order.size(); vis_order.emplace_back(dnow, now); depth[now] = dnow; for (auto &&nxt : to[now]) { if (nxt != prv) { _build_dfs(nxt, now, dnow + 1); vis_order.emplace_back(dnow, now); } } } StaticRMQ

rmq; void build(int root_) { assert(root_ >= 0 and root_ < N); if (root == root_) return; root = root_; subtree_begin.assign(N, 0); vis_order.clear(); vis_order.reserve(N * 2); depth.assign(N, 0); _build_dfs(root, -1, 0); rmq = {vis_order, P{N, -1}}; } bool built() const noexcept { return root >= 0; } int lca(int u, int v) const { assert(0 <= u and u < N); assert(0 <= v and v < N); assert(built()); int a = subtree_begin[u], b = subtree_begin[v]; if (a > b) std::swap(a, b); return rmq.get(a, b + 1).second; }; int path_length(int u, int v) const { return depth[u] + depth[v] - depth[lca(u, v)] * 2; } }; #include #include #include // Euler tour // https://maspypy.com/euler-tour-%E3%81%AE%E3%81%8A%E5%8B%89%E5%BC%B7 struct euler_tour { int n; int root; std::vector> edges; // (parent, child) // - 頂点 v に関する部分木に含まれる辺は, [begins[v], ends[v]) に 2 回ずつ登場 // - [begins[u], begins[v]) (begins[u] <= begins[v]) の半開区間に u-v パスを構成する辺が奇数回登場 std::vector begins; std::vector ends; vector visord; vector visord_inv; vector visord_inv_right; std::vector par_eid; std::vector> tour; // (edge_id, flg) flg=true: down, false: up void _build_dfs(int now, int prv_eid, const std::vector>> &to) { tour.emplace_back(prv_eid, true); begins[now] = tour.size(); visord_inv.at(now) = visord.size(); visord.push_back(now); for (auto [nxt, eid] : to[now]) { if (eid == prv_eid) continue; par_eid[nxt] = eid; if (edges[eid].first == nxt) std::swap(edges[eid].first, edges[eid].second); _build_dfs(nxt, eid, to); } ends[now] = tour.size(); visord_inv_right.at(now) = visord.size(); tour.emplace_back(prv_eid, false); } euler_tour() = default; euler_tour(int n, const std::vector> &edges_, int root) : n(n), root(root), edges(edges_), begins(n, -1), ends(n, -1), visord_inv(n, -1), visord_inv_right(n, -1), par_eid(n, -1) { std::vector>> to(n); for (int eid = 0; eid < (int)edges.size(); ++eid) { auto [u, v] = edges[eid]; assert(u != v); to.at(u).emplace_back(v, eid); to.at(v).emplace_back(u, eid); } _build_dfs(root, -1, to); } // 頂点 v の部分木の頂点数 int subtree_size(int v) const { return (ends.at(v) - begins.at(v)) / 2 + 1; } int par(int v) const { int eid = par_eid.at(v); return eid == -1 ? -1 : edges[eid].first; } int tour_child(int idx) const { int eid = tour.at(idx).first; return eid < 0 ? root : edges[eid].second; } }; #include #include // 0-indexed BIT (binary indexed tree / Fenwick tree) (i : [0, len)) template struct BIT { int n; std::vector data; BIT(int len = 0) : n(len), data(len) {} void reset() { std::fill(data.begin(), data.end(), T(0)); } void add(int pos, T v) { // a[pos] += v pos++; while (pos > 0 and pos <= n) data[pos - 1] += v, pos += pos & -pos; } T sum(int k) const { // a[0] + ... + a[k - 1] T res = 0; while (k > 0) res += data[k - 1], k -= k & -k; return res; } T sum(int l, int r) const { return sum(r) - sum(l); } // a[l] + ... + a[r - 1] template friend OStream &operator<<(OStream &os, const BIT &bit) { T prv = 0; os << '['; for (int i = 1; i <= bit.n; i++) { T now = bit.sum(i); os << now - prv << ',', prv = now; } return os << ']'; } }; int main() { int N; cin >> N; UndirectedWeightedTree tree(N); // TreeLCA lca(N); vector edges(N - 1); for (auto &[a, b] : edges) cin >> a >> b, --a, --b, tree.add_edge(a, b, 1); dbg(edges); auto Distance = [&](int u, int v) -> int { // return lca.path_length(u, v); return tree.path_length(u, v); // const int l = lca.lca(u, v); // return lca.depth.at(u) + lca.depth.at(v) - lca.depth.at(l) * 2; }; const int root = 0; tree.fix_root(root); // lca.build(root); const euler_tour et(N, edges, root); fast_set fs(N); vector C(N); cin >> C; BIT bit(N); auto UpdateDist = [&](int left_pos) { if (left_pos < 0) return; const int right_pos = fs.next(left_pos + 1); const int w = bit.sum(left_pos, left_pos + 1); bit.add(left_pos, -w); if (!fs.contains(left_pos) or right_pos >= N) { return; } const int l = et.visord.at(left_pos), r = et.visord.at(right_pos); bit.add(left_pos, Distance(l, r)); }; auto Upd = [&](int v) { const int pos = et.visord_inv.at(v); if (C.at(v)) { fs.insert(pos); } else { fs.erase(pos); } UpdateDist(pos); UpdateDist(fs.prev(pos - 1)); }; REP(i, N) { if (C.at(i)) Upd(i); } dbg(C); dbg(et.visord); dbg(et.visord_inv); int Q; cin >> Q; while (Q--) { int tp; cin >> tp; if (tp == 1) { int v; cin >> v; --v; C.at(v) ^= 1; Upd(v); } else { int x, y; cin >> x >> y; --x, --y; dbg(make_tuple(x, y, C)); if (x != y and tree.lowest_common_ancestor(x, y) == y) { const int z = tree.kth_parent(x, Distance(x, y) - 1); int zl = et.visord_inv.at(z), zr = et.visord_inv_right.at(z); zl = fs.prev(zl - 1); zr = fs.next(zr); const int f0 = fs.next(0), f1 = fs.prev(N - 1); // dbg(make_tuple(z, zl, zr, f0, f1)); if (f0 > f1) { cout << "0\n"; } else { const int g0 = et.visord.at(f0), g1 = et.visord.at(f1); int ret = 0; if (zl >= 0 and zr < N) { const int l = et.visord.at(zl); const int r = et.visord.at(zr); ret = bit.sum(f0, zl) + bit.sum(zr, f1) + Distance(g0, g1) + Distance(l, r); } else if (zl >= 0) { const int l = et.visord.at(zl); ret = bit.sum(f0, zl) + Distance(g0, l); } else if (zr < N) { const int r = et.visord.at(zr); ret = bit.sum(zr, f1) + Distance(g1, r); } else { ret = -2; // assert(false); } cout << (ret / 2 + 1) << '\n'; } } else { if (x == y) y = 0; int lpos = et.visord_inv.at(y), rpos = et.visord_inv_right.at(y); lpos = fs.next(lpos); rpos = fs.prev(rpos - 1); if (lpos > rpos) { cout << "0\n"; } else { const int l = et.visord.at(lpos), r = et.visord.at(rpos); const auto ret = bit.sum(lpos, rpos) + Distance(l, r); // dbg(make_tuple(l, r, ret)); cout << ret / 2 + 1 << '\n'; } } } } }