#nullable enable #region var (_input, _iter) = (Array.Empty(), 0); T I() where T : IParsable { while (_iter >= _input.Length) (_input, _iter) = (Console.ReadLine()!.Split(' '), 0); return T.Parse(_input[_iter++], null); } #endregion var n = I(); var k = I(); FPSNTT.MaxLength = n + 1; ModInt m = n; var fiz = new FPSNTT(); for (var i = 0; i <= n; i++) fiz[i] = (-i).Factorial(); var g = new FPSNTT(); for (var i = 2; i <= n; i++) g[i] = i * m.Power(n - i - 1) * ((ModInt)i - 1).Power(k); var f = g * fiz; var ans = new ModInt[n + 1]; for (var i = 1; i <= n; i++) ans[i] = f[i] * i.Factorial() / 2; for (var i = n; i > 0; i--) ans[i] -= ans[i - 1]; Console.WriteLine(string.Join(Environment.NewLine, ans[1..])); readonly record struct ModInt { public const int Mod = 998244353; int V { get; init; } public ModInt(long value) { var v = value % Mod; if (v < 0) v += Mod; V = (int)v; } static ModInt New(int value) => new(){ V = value }; public static implicit operator ModInt(long v) => new(v); public static implicit operator int(ModInt modInt) => modInt.V; public static ModInt AdditiveIdentity => New(0); public static ModInt operator +(ModInt a, ModInt b) { var v = a.V + b.V; if (v >= Mod) v -= Mod; return New(v); } public ModInt AdditiveInverse() { if (V == 0) return AdditiveIdentity; return New(Mod - V); } public static ModInt operator -(ModInt a, ModInt b) { var v = a.V - b.V; if (v < 0) v += Mod; return New(v); } public static ModInt MultiplicativeIdentity => New(1); public static ModInt operator *(ModInt a, ModInt b) => New((int)((long)a.V * b.V % Mod)); public ModInt MultiplicativeInverse() => V == 0 ? throw new DivideByZeroException() : Power(V, Mod - 2, Mod); public static ModInt operator /(ModInt a, ModInt b) => a * b.MultiplicativeInverse(); static long Power(long v, ulong p, long mod) { var (res, k) = (1L, v); while (p > 0) { if ((p & 1) > 0) res = res * k % mod; k = k * k % mod; p >>= 1; } return res; } public ModInt Power(long p) => p < 0 ? MultiplicativeInverse().Power(-p) : Power(V, (ulong)p, Mod); public override string ToString() => V.ToString(); } static class FactorialExtensions { public static ModInt Factorial(this int value) { Extend(value); return value < 0 ? _inv[-value] : _fac[value]; } public static ModInt P(this int n, int r) { if (r < 0 || r > n) return 0; if (n <= MaxN) return Factorial(n) * Factorial(r - n); ModInt res = 1; for (var i = 0; i < r; i++) res *= n - i; return res; } public static ModInt C(this int n, int r) { if (r < 0 || r > n) return 0; r = Math.Min(r, n - r); return P(n, r) * Factorial(-r); } public static ModInt H(this int n, int r) => C(r + n - 1, r); public static ModInt ModIntInverse(this int n) { if (n == 0) throw new DivideByZeroException(); if (n < 0) return ModIntInverse(-n).AdditiveInverse(); if (n > MaxN) return ((ModInt)n).MultiplicativeInverse(); return Factorial(n - 1) * Factorial(-n); } // [x^k](1-x)^-n = nHk public static ModInt[] NegativeBinomialSeries(long n, int m) { var res = new ModInt[m + 1]; res[0] = 1; for (var i = 1; i <= m; i++) res[i] = res[i - 1] * (n - 1 + i) * ModIntInverse(i); return res; } const int MaxN = (1 << 24) - 1; static ModInt[] _fac = new ModInt[]{ 1 }; static ModInt[] _inv = new ModInt[]{ 1 }; static void Extend(int q) { var l = _fac.Length; if (q < 0) q = -q; if (q < l || MaxN < q) return; while (l <= q) l <<= 1; var fac = new ModInt[l]; var inv = new ModInt[l]; fac[0] = 1; for (var i = 1; i < fac.Length; i++) fac[i] = fac[i - 1] * i; inv[l - 1] = fac[l - 1].Power(-1); for (var i = inv.Length - 1; i > 0; i--) inv[i - 1] = inv[i] * i; (_fac, _inv) = (fac, inv); } } partial class FPSNTT { public static int MaxLength = -4; public const int Mod = (1 << 23) * 119 + 1; long[] _data = new[]{ 0L }; int _length = 1; public FPSNTT() { } public static FPSNTT From(ReadOnlySpan a) { var res = new FPSNTT(); for (var i = 0; i < a.Length; i++) res[i] = a[i]; return res; } public long this[int i] { get => i < _length ? _data[i] : 0; set { Resize(i); _data[i] = Rem(value); } } public long[] Slice(int start, int length) { var res = new long[length]; for (var i = 0; i < length; i++) res[i] = this[start + i]; return res; } public static FPSNTT operator *(FPSNTT f, long k) { k = Rem(k); var a = new long[f._data.Length]; for (var i = 0; i < a.Length; i++) a[i] = f[i] * k % Mod; return new(a); } public static FPSNTT operator /(FPSNTT f, long k) => f * Pow(k, -1); public static FPSNTT AdditiveIdentity => new(new[]{ 0L }); public static FPSNTT operator +(FPSNTT l, FPSNTT r) { if (l._length < r._length) (l, r) = (r, l); var (llen, rlen) = (l._length, r._length); var a = new long[l._data.Length]; for (var i = 0; i < llen; i++) a[i] += l[i]; for (var i = 0; i < rlen; i++) a[i] = (a[i] + r[i]) % Mod; return new(a); } public FPSNTT AdditiveInverse() => this * -1; public static FPSNTT operator -(FPSNTT l, FPSNTT r) => l + r * -1; public static FPSNTT MultiplicativeIdentity => new(new[]{ 1L }); public static FPSNTT operator *(FPSNTT f, FPSNTT g) => new(Mul(f.ToSpan(), g.ToSpan()), f._length + g._length - 1); public FPSNTT MultiplicativeInverse() { if (_data[0] == 0) throw new Exception("the constant term must not be zero"); return new(Inv(ToSpan(), MaxLength)); } public static FPSNTT operator /(FPSNTT l, FPSNTT r) => l * r.MultiplicativeInverse(); ReadOnlySpan ToSpan() => _data.AsSpan()[.._length]; void Resize(int idx) { _length = Math.Max(_length, idx + 1); var len = _data.Length; if (idx < len) return; if (idx >= MaxLength) throw new IndexOutOfRangeException(); var len2 = len; while (idx >= len2) len2 <<= 1; var (data, data2) = (_data, new long[len2]); for (var i = 0; i < len; i++) data2[i] = data[i]; _data = data2; } static long[] Expanded(ReadOnlySpan data, int level) { var res = new long[1 << level]; data.CopyTo(res); return res; } FPSNTT(long[] data, int length) { _data = data; _length = Math.Min(length, MaxLength); } FPSNTT(long[] data) { _data = data; _length = Math.Min(data.Length, MaxLength); } static long Rem(long v) { var res = v % Mod; return res < 0 ? res + Mod : res; } static long Pow(long n, long m) { if (m < 0) m = (m % (Mod - 1)) + Mod - 1; var (res, k) = (1L, n); while (m > 0) { if ((m & 1) > 0) res = res * k % Mod; k = k * k % Mod; m >>= 1; } return res; } static readonly long[] _r1, _r2; static FPSNTT() { var r1 = new long[23 + 1]; var r2 = new long[23 + 1]; var u = Pow(3, 119); (r1[23], r2[23]) = (u, Pow(u, -1)); for (var i = 23; i > 0; i--) { r1[i - 1] = r1[i] * r1[i] % Mod; r2[i - 1] = r2[i] * r2[i] % Mod; } (_r1, _r2) = (r1, r2); } static void FastModuloTransform(Span f, int level, bool reverse) { var n = f.Length; if (n < 2) return; var b = new int[n]; for (int p = 1, d = n >> 1; p < n; p <<= 1, d >>= 1) for (var k = 0; k < p; ++k) b[k | p] = b[k] | d; for (var i = 0; i < n; i++) { var j = b[i]; if (i < j) (f[i], f[j]) = (f[j], f[i]); } var rotations = reverse ? _r1 : _r2; for (var k = 1; k <= level; k++) { var l = 1 << k; var h = l >> 1; var root = rotations[k]; for (var i = 0; i < n; i += l) { var rotation = 1L; for (var j = 0; j < h; j++) { var (ui, vi) = (i + j, i + j + h); var (u, v) = (f[ui], f[vi] * rotation % Mod); (f[ui], f[vi]) = ((u + v) % Mod, (u - v + Mod) % Mod); rotation = rotation * root % Mod; } } } } static long[] Mul(ReadOnlySpan f, ReadOnlySpan g, int len = -1) { if (len < 0) len = f.Length + g.Length - 1; var (n, level) = (1, 0); while (n < len) (n, level) = (n << 1, level + 1); var ft = Expanded(f, level); var gt = Expanded(g, level); FastModuloTransform(ft, level, false); FastModuloTransform(gt, level, false); for (var i = 0; i < n; i++) ft[i] = ft[i] * gt[i] % Mod; FastModuloTransform(ft, level, true); var nInverse = Pow(n, -1); for (var i = 0; i < len; i++) ft[i] = ft[i] * nInverse % Mod; for (var i = len; i < n; i++) ft[i] = 0; return ft; } static long[] InvStep(ReadOnlySpan f, ReadOnlySpan g) { var l1 = g.Length; var l2 = l1 << 1; var flen = Math.Min(f.Length, l2); var h = Mul(f[..flen], g, l2); h.AsSpan()[..l1].Clear(); h = Mul(h, g, l2); for (var i = 0; i < l1; i++) h[i] = g[i]; for (var i = l1; i < l2; i++) h[i] = (Mod - h[i]) % Mod; return h; } static long[] Inv(ReadOnlySpan f, int tl) { var g = new[]{ Pow(f[0], -1) }; if (f.Length == 1) return g; while (g.Length < tl) g = InvStep(f, g); return g; } }