import macros;macro ImportExpand(s:untyped):untyped = parseStmt($s[2]) # source: src/cplib/tmpl/sheep.nim ImportExpand "cplib/tmpl/sheep" <=== "when not declared CPLIB_TMPL_SHEEP:\n const CPLIB_TMPL_SHEEP* = 1\n {.warning[UnusedImport]: off.}\n {.hint[XDeclaredButNotUsed]: off.}\n import algorithm\n import sequtils\n import tables\n import macros\n import math\n import sets\n import strutils\n import strformat\n import sugar\n import heapqueue\n import streams\n import deques\n import bitops\n import std/lenientops\n import options\n #入力系\n proc scanf(formatstr: cstring){.header: \"\", varargs.}\n proc getchar(): char {.importc: \"getchar_unlocked\", header: \"\", discardable.}\n proc ii(): int {.inline.} = scanf(\"%lld\\n\", addr result)\n proc lii(N: int): seq[int] {.inline.} = newSeqWith(N, ii())\n proc si(): string {.inline.} =\n result = \"\"\n var c: char\n while true:\n c = getchar()\n if c == ' ' or c == '\\n' or c == '\\255':\n break\n result &= c\n #chmin,chmax\n template `max=`(x, y) = x = max(x, y)\n template `min=`(x, y) = x = min(x, y)\n proc chmin[T](x: var T, y: T):bool=\n if x > y:\n x = y\n return true\n return false\n proc chmax[T](x: var T, y: T):bool=\n if x < y:\n x = y\n return true\n return false\n #bit演算\n proc `%`*(x: int, y: int): int =\n result = x mod y\n if y > 0 and result < 0: result += y\n if y < 0 and result > 0: result += y\n proc `//`*(x: int, y: int): int{.inline.} =\n result = x div y\n if y > 0 and result * y > x: result -= 1\n if y < 0 and result * y < x: result -= 1\n proc `%=`(x: var int, y: int): void = x = x%y\n proc `//=`(x: var int, y: int): void = x = x//y\n proc `**`(x: int, y: int): int = x^y\n proc `**=`(x: var int, y: int): void = x = x^y\n proc `^`(x: int, y: int): int = x xor y\n proc `|`(x: int, y: int): int = x or y\n proc `&`(x: int, y: int): int = x and y\n proc `>>`(x: int, y: int): int = x shr y\n proc `<<`(x: int, y: int): int = x shl y\n proc `~`(x: int): int = not x\n proc `^=`(x: var int, y: int): void = x = x ^ y\n proc `&=`(x: var int, y: int): void = x = x & y\n proc `|=`(x: var int, y: int): void = x = x | y\n proc `>>=`(x: var int, y: int): void = x = x >> y\n proc `<<=`(x: var int, y: int): void = x = x << y\n proc `[]`(x: int, n: int): bool = (x and (1 shl n)) != 0\n #便利な変換\n proc `!`(x: char, a = '0'): int = int(x)-int(a)\n #定数\n when not declared CPLIB_UTILS_CONSTANTS:\n const CPLIB_UTILS_CONSTANTS* = 1\n const INF32*: int32 = 1001000027.int32\n const INF64*: int = int(3300300300300300491)\n \n const INF = INF64\n #converter\n\n #range\n iterator range(start: int, ends: int, step: int): int =\n var i = start\n if step < 0:\n while i > ends:\n yield i\n i += step\n elif step > 0:\n while i < ends:\n yield i\n i += step\n iterator range(ends: int): int = (for i in 0.. r[i]:\n return false\n elif l[i] < r[i]:\n return true\n return len(l) < len(r)" # source: src/cplib/graph/graph.nim ImportExpand "cplib/graph/graph" <=== "when not declared CPLIB_GRAPH_GRAPH:\n const CPLIB_GRAPH_GRAPH* = 1\n\n import sequtils\n import math\n type DynamicGraph*[T] = ref object of RootObj\n edges*: seq[seq[(int32, T)]]\n len*: int\n type StaticGraph*[T] = ref object of RootObj\n src*, dst*: seq[int32]\n cost*: seq[T]\n elist*: seq[(int32, T)]\n start*: seq[int32]\n len*: int\n\n type WeightedDirectedGraph*[T] = ref object of DynamicGraph[T]\n type WeightedUnDirectedGraph*[T] = ref object of DynamicGraph[T]\n type UnWeightedDirectedGraph* = ref object of DynamicGraph[int]\n type UnWeightedUnDirectedGraph* = ref object of DynamicGraph[int]\n type WeightedDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n type WeightedUnDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n type UnWeightedDirectedStaticGraph* = ref object of StaticGraph[int]\n type UnWeightedUnDirectedStaticGraph* = ref object of StaticGraph[int]\n\n type GraphTypes*[T] = DynamicGraph[T] or StaticGraph[T]\n type DirectedGraph* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph\n type UnDirectedGraph* = WeightedUnDirectedGraph or UnWeightedUnDirectedGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n type WeightedGraph*[T] = WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T] or WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T]\n type UnWeightedGraph* = UnWeightedDirectedGraph or UnWeightedUnDirectedGraph or UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n type DynamicGraphTypes* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedUnDirectedGraph or UnWeightedUnDirectedGraph\n type StaticGraphTypes* = WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n\n proc add_edge_dynamic_impl*[T](g: DynamicGraph[T], u, v: int, cost: T, directed: bool) =\n g.edges[u].add((v.int32, cost))\n if not directed: g.edges[v].add((u.int32, cost))\n\n proc initWeightedDirectedGraph*(N: int, edgetype: typedesc = int): WeightedDirectedGraph[edgetype] =\n result = WeightedDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n proc add_edge*[T](g: var WeightedDirectedGraph[T], u, v: int, cost: T) =\n g.add_edge_dynamic_impl(u, v, cost, true)\n\n proc initWeightedUnDirectedGraph*(N: int, edgetype: typedesc = int): WeightedUnDirectedGraph[edgetype] =\n result = WeightedUnDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n proc add_edge*[T](g: var WeightedUnDirectedGraph[T], u, v: int, cost: T) =\n g.add_edge_dynamic_impl(u, v, cost, false)\n\n proc initUnWeightedDirectedGraph*(N: int): UnWeightedDirectedGraph =\n result = UnWeightedDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n proc add_edge*(g: var UnWeightedDirectedGraph, u, v: int) =\n g.add_edge_dynamic_impl(u, v, 1, true)\n\n proc initUnWeightedUnDirectedGraph*(N: int): UnWeightedUnDirectedGraph =\n result = UnWeightedUnDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n proc add_edge*(g: var UnWeightedUnDirectedGraph, u, v: int) =\n g.add_edge_dynamic_impl(u, v, 1, false)\n\n proc len*[T](G: WeightedGraph[T]): int = G.len\n proc len*(G: UnWeightedGraph): int = G.len\n\n iterator `[]`*[T](g: WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T], x: int): (int, T) =\n for e in g.edges[x]: yield (e[0].int, e[1])\n iterator `[]`*(g: UnWeightedDirectedGraph or UnWeightedUnDirectedGraph, x: int): int =\n for e in g.edges[x]: yield e[0].int\n\n proc add_edge_static_impl*[T](g: StaticGraph[T], u, v: int, cost: T, directed: bool) =\n g.src.add(u.int32)\n g.dst.add(v.int32)\n g.cost.add(cost)\n if not directed:\n g.src.add(v.int32)\n g.dst.add(u.int32)\n g.cost.add(cost)\n\n proc build_impl*[T](g: StaticGraph[T]) =\n g.start = newSeqWith(g.len + 1, 0.int32)\n for i in 0.. 0, \"Static Graph must be initialized before use.\"\n\n iterator `[]`*[T](g: WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T], x: int): (int, T) =\n g.static_graph_initialized_check()\n for i in g.start[x].. hld.PD[v]:\n u = hld.P[hld.PP[u]]\n while hld.PP[u] != hld.PP[v]:\n u = hld.P[hld.PP[u]]\n v = hld.P[hld.PP[v]]\n if hld.D[u] > hld.D[v]:\n return v\n u\n proc dist*(hld: HeavyLightDecomposition, u: int, v: int): int =\n hld.depth(u) + hld.depth(v) - hld.depth(hld.lca(u, v)) * 2\n proc path*(hld: HeavyLightDecomposition, r: int, c: int, include_root: bool, reverse_path: bool): seq[(int, int)] =\n var (r, c) = (r, c)\n var k = hld.PD[c] - hld.PD[r] + 1\n if k <= 0:\n return @[]\n var res = newSeqWith(k, (0, 0))\n for i in 0.. hld.D[c]:\n return @[]\n var root_off = int(not include_root)\n res[^1] = (hld.rangeL[r]+root_off, hld.rangeL[c]+1)\n if res[^1][0] == res[^1][1]:\n discard res.pop()\n k -= 1\n if reverse_path:\n for i in 0.. 0 and hld.toSeq2Out(stack[^1]) < hld.toseq2In(v[i]):\n discard stack.pop()\n if len(stack) != 0:\n result.add_edge(stack[^1],v[i])\n stack.add(v[i])\n \n proc initAuxiliaryWeightedTree*(hld:HeavyLightDecomposition,v:seq[int]):WeightedUnDirectedTableGraph[int,int]=\n var v = v.sortedByit(hld.toseq(it))\n for i in 0..<(len(v)-1):\n v.add(hld.lca(v[i],v[i+1]))\n v = v.sortedByIt(hld.toseq(it)).deduplicate(true)\n var stack :seq[int]\n result = initWeightedUnDirectedTableGraph(v,int)\n stack.add(v[0])\n for i in 1.. 0 and hld.toSeq2Out(stack[^1]) < hld.toseq2In(v[i]):\n discard stack.pop()\n if len(stack) != 0:\n result.add_edge(stack[^1],v[i],hld.depth(v[i])-hld.depth(stack[^1]))\n stack.add(v[i])\n\n" # source: src/atcoder/lazysegtree.nim ImportExpand "atcoder/lazysegtree" <=== "when not declared ATCODER_LAZYSEGTREE_HPP:\n const ATCODER_LAZYSEGTREE_HPP* = 1\n \n when not declared ATCODER_INTERNAL_BITOP_HPP:\n const ATCODER_INTERNAL_BITOP_HPP* = 1\n import std/bitops\n \n #ifdef _MSC_VER\n #include \n #endif\n \n # @param n `0 <= n`\n # @return minimum non-negative `x` s.t. `n <= 2**x`\n proc ceil_pow2*(n:SomeInteger):int =\n var x = 0\n while (1.uint shl x) < n.uint: x.inc\n return x\n # @param n `1 <= n`\n # @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\n proc bsf*(n:SomeInteger):int =\n return countTrailingZeroBits(n)\n \n when not declared ATCODER_RANGEUTILS_HPP:\n const ATCODER_RANGEUTILS_HPP* = 1\n type RangeType* = Slice[int] | HSlice[int, BackwardsIndex] | Slice[BackwardsIndex]\n type IndexType* = int | BackwardsIndex\n template halfOpenEndpoints*(p:Slice[int]):(int,int) = (p.a, p.b + 1)\n template `^^`*(s, i: untyped): untyped =\n (when i is BackwardsIndex: s.len - int(i) else: int(i))\n template halfOpenEndpoints*[T](s:T, p:RangeType):(int,int) =\n (s^^p.a, s^^p.b + 1)\n \n import std/sequtils\n import std/algorithm\n {.push inline.}\n type LazySegTree*[S,F;p:static[tuple]] = object\n len*, size*, log*:int\n d*:seq[S]\n lz*:seq[F]\n\n template calc_op*[ST:LazySegTree](self:ST or typedesc[ST], a, b:ST.S):auto =\n block:\n let u = ST.p.op(a, b)\n u\n template calc_e*[ST:LazySegTree](self:ST or typedesc[ST]):auto =\n block:\n let u = ST.p.e()\n u\n template calc_mapping*[ST:LazySegTree](self:ST or typedesc[ST], a:ST.F, b:ST.S):auto =\n block:\n let u = ST.p.mapping(a, b)\n u\n template calc_composition*[ST:LazySegTree](self:ST or typedesc[ST], a, b:ST.F):auto =\n block:\n # こう書かないとバグる事象を検出\n let u = ST.p.composition(a, b)\n u\n template calc_id*[ST:LazySegTree](self:ST or typedesc[ST]):auto =\n block:\n let u = ST.p.id()\n u\n\n proc update[ST:LazySegTree](self:var ST, k:int) =\n self.d[k] = ST.calc_op(self.d[2 * k], self.d[2 * k + 1])\n proc all_apply*[ST:LazySegTree](self:var ST, k:int, f:ST.F) =\n self.d[k] = ST.calc_mapping(f, self.d[k])\n if k < self.size:\n self.lz[k] = ST.calc_composition(f, self.lz[k])\n proc all_apply*[ST:LazySegTree](self:var ST, f:ST.F) =\n self.all_apply(1, f)\n proc push*[ST:LazySegTree](self: var ST, k:int) =\n self.all_apply(2 * k, self.lz[k])\n self.all_apply(2 * k + 1, self.lz[k])\n self.lz[k] = ST.calc_id()\n\n proc init[ST:LazySegTree](self:var ST, v:seq[ST.S]) =\n let\n n = v.len\n log = ceil_pow2(n)\n size = 1 shl log\n (self.len, self.size, self.log) = (n, size, log)\n if self.d.len < 2 * size:\n self.d = newSeqWith(2 * size, ST.calc_e())\n else:\n self.d.fill(0, 2 * size - 1, ST.calc_e())\n for i in 0.. int max_right(int l) {\n# return max_right(l, [](S x) { return g(x); });\n# }\n proc max_right*[ST:LazySegTree](self:var ST, l:IndexType, g:proc(s:ST.S):bool):int =\n var l = self^^l\n assert l in 0..self.len\n assert g(ST.calc_e())\n if l == self.len: return self.len\n l += self.size\n for i in countdown(self.log, 1): self.push(l shr i)\n var sm = ST.calc_e()\n while true:\n while l mod 2 == 0: l = l shr 1\n if not g(ST.calc_op(sm, self.d[l])):\n while l < self.size:\n self.push(l)\n l = (2 * l)\n if g(ST.calc_op(sm, self.d[l])):\n sm = ST.calc_op(sm, self.d[l])\n l.inc\n return l - self.size\n sm = ST.calc_op(sm, self.d[l])\n l.inc\n if not((l and -l) != l): break\n return self.len\n\n# template int min_left(int r) {\n# return min_left(r, [](S x) { return g(x); });\n# }\n proc min_left*[ST:LazySegTree](self: var ST, r:IndexType, g:proc(s:ST.S):bool):int =\n var r = self^^r\n assert r in 0..self.len\n assert(g(ST.calc_e()))\n if r == 0: return 0\n r += self.size\n for i in countdown(self.log, 1): self.push((r - 1) shr i)\n var sm = ST.calc_e()\n while true:\n r.dec\n while r > 1 and r mod 2 == 1: r = r shr 1\n if not g(ST.calc_op(self.d[r], sm)):\n while r < self.size:\n self.push(r)\n r = (2 * r + 1)\n if g(ST.calc_op(self.d[r], sm)):\n sm = ST.calc_op(self.d[r], sm)\n r.dec\n return r + 1 - self.size\n sm = ST.calc_op(self.d[r], sm)\n if not ((r and -r) != r): break\n return 0\n {.pop.}\n" # source: src/cplib/utils/binary_search.nim ImportExpand "cplib/utils/binary_search" <=== "when not declared CPLIB_UTILS_BINARY_SEARCH:\n const CPLIB_UTILS_BINARY_SEARCH* = 1\n proc meguru_bisect*(ok, ng: int, is_ok: proc(x: int): bool): int =\n var\n ok = ok\n ng = ng\n while abs(ok - ng) > 1:\n var mid = (ok + ng) div 2\n if is_ok(mid): ok = mid\n else: ng = mid\n return ok\n\n proc meguru_bisect*(ok, ng: SomeFloat, is_ok: proc(x: SomeFloat): bool, eps: SomeFloat = 1e-10): SomeFloat =\n var\n ok = ok\n ng = ng\n while abs(ok - ng) > eps and abs(ok - ng) / max(ok, ng) > eps:\n var mid = (ok + ng) / 2\n if is_ok(mid): ok = mid\n else: ng = mid\n return ok\n" # source: src/cplib/collections/segtree.nim ImportExpand "cplib/collections/segtree" <=== "when not declared CPLIB_COLLECTIONS_SEGTREE:\n const CPLIB_COLLECTIONS_SEGTREE* = 1\n import algorithm\n import strutils\n import sequtils\n type SegmentTree*[T] = ref object\n default: T\n merge: proc(x: T, y: T): T\n arr*: seq[T]\n lastnode: int\n length: int\n proc initSegmentTree*[T](v: seq[T], merge: proc(x: T, y: T): T, default: T): SegmentTree[T] =\n var lastnode = 1\n while lastnode < len(v):\n lastnode*=2\n var arr = newSeq[T](2*lastnode)\n arr.fill(default)\n var self = SegmentTree[T](default: default, merge: merge, arr: arr, lastnode: lastnode, length: len(v))\n #1-indexedで作成する\n for i in 0.. 1:\n x = x shr 1\n self.arr[x] = self.merge(self.arr[2*x], self.arr[2*x+1])\n proc get*[T](self: SegmentTree[T], q_left: Natural, q_right: Natural): T =\n assert q_left <= q_right and 0 <= q_left and q_right <= self.length\n var q_left = q_left\n var q_right = q_right\n q_left += self.lastnode\n q_right += self.lastnode\n var (lres, rres) = (self.default, self.default)\n while q_left < q_right:\n if (q_left and 1) > 0:\n lres = self.merge(lres, self.arr[q_left])\n q_left += 1\n if (q_right and 1) > 0:\n q_right -= 1\n rres = self.merge(self.arr[q_right], rres)\n q_left = q_left shr 1\n q_right = q_right shr 1\n return self.merge(lres, rres)\n proc get*[T](self: SegmentTree[T], segment: HSlice[int, int]): T =\n assert segment.a <= segment.b + 1 and 0 <= segment.a and segment.b+1 <= self.length\n return self.get(segment.a, segment.b+1)\n proc `[]`*[T](self: SegmentTree[T], segment: HSlice[int, int]): T = self.get(segment)\n proc `[]`*[T](self: SegmentTree[T], index: Natural): T =\n assert index < self.length\n return self.arr[index+self.lastnode]\n proc `[]=`*[T](self: SegmentTree[T], index: Natural, val: T) =\n assert index < self.length\n self.update(index, val)\n proc get_all*[T](self: SegmentTree[T]): T =\n return self.arr[1]\n proc len*[T](self: SegmentTree[T]): int =\n return self.length\n proc `$`*[T](self: SegmentTree[T]): string =\n var s = self.arr.len div 2\n return self.arr[s.. 1) and (r mod 2 != 0)): r = (r shr 1)\n if not f(self.merge(self.arr[r], sm)):\n while r < self.lastnode:\n r = 2 * r + 1\n if f(self.merge(self.arr[r], sm)):\n sm = self.merge(self.arr[r], sm)\n r -= 1\n return r + 1 - self.lastnode\n sm = self.merge(self.arr[r], sm)\n if (r and -r) == r: break\n return 0\n" proc initRangeAddRangeMinSegtree[T](v:seq[T]):auto= type S = (T,int) type F = T proc op(a,b:S):S= if a[0] == b[0]: return (a[0],a[1]+b[1]) elif a[0] < b[0]: return a else: return b proc e():S=(INF,1) proc mapping(f:F,x:S):S=(x[0]+f,x[1]) proc composition(f,g:F):F=f+g proc id():F=0 return LazySegTree.getType(S, F, op, e, mapping, composition, id).init(v.mapit((it,1))) var N = ii() var G = initUnWeightedUnDirectedGraph(N) # クエリ1 : 色反転 # クエリ2 : yを根としたときに、xが含まれないような部分木に含まれる黒色の頂点の数を出力 # クエリ2はyを根としたときにxが含まれるような部分木に含まれる黒色の頂点の数と解釈可能 # x = y : すべての黒色頂点 # yが黒 : それも含む # 部分木クエリといえばオイラーツアーだが... # range add range 最小値カウント # -> 遅延セグ木に乗る # hldするなどの行為により部分木クエリは可能になった。 # xがyの子孫にあるとき : yについて部分木クエリ - yからx方向に1進んだ頂点から部分木クエリ + 親方向 # 親方向ってどうやってやるんだ??????? # 親方向ではじめて別の部分木に頂点があるところを見つけて、そこの部分木クエリから - yからx方向に1進んだ頂点から部分木クエリ # yがxの子孫にあるとき : yについて部分木クエリ for _ in range(N-1): var a,b = ii()-1 G.add_edge(a,b) var tmp = lii(N) var C = newsegwith(N,l+r,0) var T = G.initHld(0) for i in range(N): C[T.toseq(i)] = tmp[i] var st = initRangeAddRangeMinSegtree(newseqwith(N,0)) for i in range(N): if C[T.toseq(i)] == 1: for (l,r) in T.path(0,i,true,false): st.apply(l..= 0 else: # ある部分木のみに黒が含まれている # その部分木の方向がxと一致しているか判定すればok # echo "!",lca if st[T.toseq(y)][0] == st[T.toseq(z)][0]: echo 0 else: echo get_subtree_query(lca) elif T.toseq(x) notin l..= 0 else: #echo "?" var dist = T.dist(0,y) proc is_ok(arg:int):bool= var x = T.la(y,0,arg) return st[T.toseq(x)][0] == st[T.toseq(y)][0] #echo st[T.toseq(0)]," ",st[T.toseq(1)]," ",st[T.toseq(2)] if st[T.toseq(0)][0] == st[T.toseq(z)][0]: echo 0 else: var res = meguru_bisect(0,dist,is_ok) #echo "!",res var root = T.la(y,0,res) var lca = all_black_lca() #echo "root:",root echo get_subtree_query(lca)-get_subtree_query(root) assert get_subtree_query(lca)-get_subtree_query(root) >= 0