class FenwickTree: def __init__(self, n: int): self.data = [0] * (n+10) self.n = len(self.data) - 1 def add(self, p: int, x: int): assert 0 <= p < self.n p += 1 while p < len(self.data): self.data[p] += x p += p & -p def sum(self, p: int) -> int: """区間 [0, p] の和""" assert 0 <= p < self.n p += 1 s = 0 while p > 0: s += self.data[p] p -= p & -p return s def range_sum(self, l: int, r: int) -> int: """区間 [l, r] の和""" assert 0 <= l <= r < self.n s = self.sum(r) if l > 0: s -= self.sum(l-1) return s def suffix_sum(self, l: int) -> int: """区間 l... の和""" return self.range_sum(l, self.n-1) def inversion_count(a: list[int]) -> int: """転倒数を求める""" ft = FenwickTree(max(a) + 1) res = 0 for i, x in enumerate(a, 1): ft.add(x, 1) res += i - ft.sum(x) return res def solve(): slis = sorted(A) res = 0 for i in range(K): xs = [] ys = [] for j in range(i, N, K): xs.append(A[j]) ys.append(slis[j]) if sorted(xs) != ys: return -1 if len(xs) > 0: res += inversion_count(xs) return res N, K = map(int, input().split()) A = list(map(int, input().split())) ans = solve() print(ans)