using System; using static System.Console; using System.Linq; using System.Collections.Generic; class Program { static int NN => int.Parse(ReadLine()); static int[] NList => ReadLine().Split().Select(int.Parse).ToArray(); static string[] SList(long n) => Enumerable.Repeat(0, (int)n).Select(_ => ReadLine()).ToArray(); public static void Main() { Solve(); } static void Solve() { var c = NList; var (n, k) = (c[0], c[1]); if (n == k) { WriteLine(1); return; } var dlist = DivList(n); var ans = 0L; var mod = 1_000_000_007; var ncr = new NCR(n, mod); var mdic = new Dictionary(); foreach (var d in dlist) { // 長さN/dのパターン if (k % d != 0) continue; var mul = 1L; if (mdic.ContainsKey(n / d)) mul = (1 - mdic[n / d] + mod) % mod; ans = (ans + ncr.Calc(n / d, k / d) * mul % mod) % mod; var ddlist = DivList(n / d); foreach (var dd in ddlist) { if (k / d % dd != 0) continue; // 長さN/dのパターンを数えたときに含まれる長さN/d/ddのパターン数 var len = n / d / dd; if (mdic.ContainsKey(len)) mdic[len] = (mdic[len] + mul) % mod; else mdic[len] = mul; } } WriteLine(ans); } static List DivList(int n) { var list = new List(); var rev = new List(); for (var i = 2; i * i <= n; ++i) { if (n % i == 0) { list.Add(i); if (i * i < n) rev.Add(n / i); } } rev.Reverse(); list.AddRange(rev); return list; } class NCR { int[] facts; int[] revFacts; int mod; public NCR(int n, int mod) { facts = new int[n + 1]; revFacts = new int[n + 1]; this.mod = mod; facts[0] = 1; var tmp = 1L; for (var i = 1; i <= n; ++i) { tmp = tmp * i % mod; facts[i] = (int)tmp; } tmp = Exp(facts[n], mod - 2); revFacts[n] = (int)tmp; for (var i = n; i > 1; --i) { tmp = tmp * i % mod; revFacts[i - 1] = (int)tmp; } revFacts[0] = 1; } public long Exp(long n, long k) { n = n % mod; if (k == 0) return 1; if (k == 1) return n; var half = Exp(n, k / 2); var result = half * half % mod; return ((k % 2) == 0) ? result : (result * n % mod); } public long Calc(int n, int r) { return (long)facts[n] * revFacts[r] % mod * revFacts[n - r] % mod; } /// nが大きくrが小さい場合の計算 public long Calc2(int n, int r) { var tmp = 1L; for (var i = 0; i < r; ++i) { tmp = tmp * (n - i) % mod; } return tmp * revFacts[r] % mod; } public long NPR(int n, int r) { return (long)facts[n] * revFacts[n - r] % mod; } public long Fact(int n) { return facts[n]; } public long RevFact(int n) { return revFacts[n]; } public long Inverse(int n) { return (long)revFacts[n] * facts[n - 1] % mod; } } }