#define _USE_MATH_DEFINES #include #define OVERLOAD_REP(v1, v2, v3, v4, NAME, ...) NAME #define REP1(i, n) for (int i = 0; (i) < (n); ++(i)) #define REP2(i, l, r) for (int i = (l); (i) < (r); ++(i)) #define REP3(i, l, r, d) for (int i = (l); (i) < (r); (i)+=(d)) #define rep(...) OVERLOAD_REP(__VA_ARGS__, REP3, REP2, REP1)(__VA_ARGS__) #define OVERLOAD_PRE(v1, v2, v3, v4, NAME, ...) NAME #define PRE1(i, n) for (int i = (n)-1; (i) >= 0; --(i)) // [0,n) #define PRE2(i, l, r) for (int i = (r)-1; (i) >= (l); --(i)) //[l,r) #define PRE3(i, l, r, d) for (int i = (r)-1; (i) >= (l); (i)-=(d)) #define pre(...) OVERLOAD_PRE(__VA_ARGS__, PRE3, PRE2, PRE1)(__VA_ARGS__) #define bg begin() #define en end() #define rbg rbegin() #define ren rend() #define all(x) x.bg,x.en #define rall(x) x.rbg,x.ren #define pf push_front #define pb push_back #define eb emplace_back #define fir first #define sec second #define sz(x) ((int)(x).size()) using namespace std; using ll = long long; using ull = unsigned long long; using ld = long double; using pii = pair; using pll = pair; using sti = stack; using sei = set; using qi = queue; using qii = queue; using dqi = deque; template using umap = unordered_map; template using uset = unordered_set; template using mset = multiset; template using pq=priority_queue; template using pqg=priority_queue, greater>; template using vc=vector; template using vvc=vc>; template using vvvc=vc>>; using vi=vc; using vvi=vc>; using vll=vc; using vvll=vc>; using vd=vc; using vvd=vc>; using vb=vc; using vvb=vc>; using vch=vc; using vs=vc; const int inf = 1001001001; const ll infl = 1LL << 60; const ll mod = 998244353; template bool chmax(t&a,u b){if(a bool chmin(t&a,u b){if(a>b){a=b; return true;} return false;} void yes(){ cout << "Yes" << '\n'; } void no(){ cout << "No" << '\n'; } // Suffix Arrayを返す // (0,1,…,n−1)の順列であって、各i=0,1,⋯,n−2 について s[sa[i]..n) < s[sa[i+1]..n) を満たすもの。 vi sa_naive(const vi& s) { int n = sz(s); vi sa(n); iota(all(sa), 0); sort(all(sa), [&](int l, int r) { if (l == r) return false; while (l < n && r < n) { if (s[l] != s[r]) return s[l] < s[r]; l++; r++; } return l == n; }); return sa; } vi sa_doubling(const vi& s) { int n = sz(s); vi sa(n), rnk = s, tmp(n); iota(all(sa), 0); for (int k = 1; k < n; k *= 2) { auto cmp = [&](int x, int y) { if (rnk[x] != rnk[y]) return rnk[x] < rnk[y]; int rx = x + k < n ? rnk[x + k] : -1; int ry = y + k < n ? rnk[y + k] : -1; return rx < ry; }; sort(all(sa), cmp); tmp[sa[0]] = 0; rep(i, 1, n) { tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0); } swap(tmp, rnk); } return sa; } // SA-IS, linear-time suffix array construction // Reference: // G. Nong, S. Zhang, and W. H. Chan, // Two Efficient Algorithms for Linear Time Suffix Array Construction template vi sa_is(const vi& s, int upper) { int n = sz(s); if (n == 0) return {}; if (n == 1) return {0}; if (n == 2) { if (s[0] < s[1]) return {0, 1}; else return {1, 0}; } if (n < THRESHOLD_NAIVE) return sa_naive(s); if (n < THRESHOLD_DOUBLING) return sa_doubling(s); vi sa(n); vb ls(n); pre(i, n-1) ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]); vi sum_l(upper + 1), sum_s(upper + 1); rep(i, n){ if (!ls[i]) sum_s[s[i]]++; else sum_l[s[i] + 1]++; } rep(i, upper+1) { sum_s[i] += sum_l[i]; if (i < upper) sum_l[i + 1] += sum_s[i]; } auto induce = [&](const vi& lms) { fill(all(sa), -1); vi buf(upper + 1); copy(all(sum_s), buf.bg); for (auto d : lms) { if (d == n) continue; sa[buf[s[d]]++] = d; } copy(all(sum_l), buf.bg); sa[buf[s[n - 1]]++] = n - 1; rep(i, n){ int v = sa[i]; if (v >= 1 && !ls[v - 1]) sa[buf[s[v - 1]]++] = v - 1; } copy(all(sum_l), buf.bg); pre(i, n){ int v = sa[i]; if (v >= 1 && ls[v - 1]) sa[--buf[s[v - 1] + 1]] = v - 1; } }; vi lms_map(n + 1, -1); int m = 0; rep(i, 1, n) if (!ls[i - 1] && ls[i]) lms_map[i] = m++; vi lms; lms.reserve(m); rep(i, 1, n) if (!ls[i - 1] && ls[i]) lms.push_back(i); induce(lms); if (m) { vi sorted_lms; sorted_lms.reserve(m); for (int v : sa) if (lms_map[v] != -1) sorted_lms.push_back(v); vi rec_s(m); int rec_upper = 0; rec_s[lms_map[sorted_lms[0]]] = 0; rep(i, 1, m){ int l = sorted_lms[i - 1], r = sorted_lms[i]; int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n; int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n; bool same = true; if (end_l - l != end_r - r) same = false; else { while (l < end_l) { if (s[l] != s[r]) break; l++; r++; } if (l == n || s[l] != s[r]) same = false; } if (!same) rec_upper++; rec_s[lms_map[sorted_lms[i]]] = rec_upper; } auto rec_sa = sa_is(rec_s, rec_upper); rep(i,m) sorted_lms[i] = lms[rec_sa[i]]; induce(sorted_lms); } return sa; } // O(N+upper) vi suffix_array(const vi& s, int upper) { assert(0 <= upper); for (int d : s) assert(0 <= d && d <= upper); auto sa = sa_is(s, upper); return sa; } // O(NlogN) template vi suffix_array(const vector& s) { int n = sz(s); vi idx(n); iota(all(idx), 0); sort(all(idx), [&](int l, int r) { return s[l] < s[r]; }); vi s2(n); int now = 0; rep(i, n){ if (i && s[idx[i - 1]] != s[idx[i]]) now++; s2[idx[i]] = now; } return sa_is(s2, now); } // O(N) vi suffix_array(const string& s) { int n = sz(s); vi s2(n); rep(i, n) s2[i] = s[i]; return sa_is(s2, 255); } // i番目の要素は s[sa[i]..n), s[sa[i+1]..n) の LCP(Longest Common Prefix) の長さ。 template vi lcp_array(const vc& s, const vi& sa) { assert(sz(s) == sz(sa)); int n = sz(s); assert(n >= 1); vi rnk(n); rep(i, n) { assert(0 <= sa[i] && sa[i] < n); rnk[sa[i]] = i; } vi lcp(n - 1); int h = 0; rep(i, n) { if (h > 0) h--; if (rnk[i] == 0) continue; int j = sa[rnk[i] - 1]; for (; j + h < n && i + h < n; h++) { if (s[j + h] != s[i + h]) break; } lcp[rnk[i] - 1] = h; } return lcp; } vi lcp_array(const string& s, const vi& sa) { int n = sz(s); vi s2(n); rep(i, n) s2[i] = s[i]; return lcp_array(s2, sa); } template struct segtree { int _n,size=1,log=0; vc d; //1-indexed segtree(): segtree(0){} segtree(int n): segtree(vc(n,e())){} segtree(const vc &v): _n(sz(v)){ while(_n>size) size<<=1, log++; d.assign(2*size,e()); rep(i,_n) d[size+i]=v[i]; pre(i,1,size) update(i); } void update(int k) { d[k]=op(d[2*k], d[2*k+1]); } void set(int p, S x){ assert(0 <= p && p < _n); p+=size; d[p]=x; rep(i,1,log+1) update(p>>i); } S get(int p) const { assert(0 <= p && p < _n); return d[p+size]; } S prod(int l, int r) const { assert(0 <= l && l <= r && r <= _n); S sml=e(), smr=e(); l+=size; r+=size; while(l>=1; r>>=1; } return op(sml,smr); } S all_prod() const { return d[1]; } template int max_right(int l, int r) const { return min(r, max_right(l, [](S x) { return f(x); })); } template int max_right(int l) const { return max_right(l, [](S x) { return f(x); }); } template int max_right(int l, int r, F f) const { return min(r, max_right(l, f)); } template int max_right(int l, F f) const { assert(0 <= l && l <= _n); assert(f(e())); if (l == _n) return _n; l += size; S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!f(op(sm, d[l]))) { while (l < size) { l = (2 * l); if (f(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template int min_left(int l, int r) const { return max(l, min_left(r, [](S x) { return f(x); })); } template int min_left(int r) const { return min_left(r, [](S x) { return f(x); }); } template int min_left(int l, int r, F f) const { return max(l, min_left(r, f)); } template int min_left(int r, F f) const { assert(0 <= r && r <= _n); assert(f(e())); if (r == 0) return 0; r += size; S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!f(op(d[r], sm))) { while (r < size) { r = (2 * r + 1); if (f(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } inline S operator[](int i) { return get(i); } /* debug */ void print() { cerr << "print: "; rep(i,_n){ cerr << (*this)[i]; if(i!=_n) cerr << " "; } cerr << endl; } }; // 一点更新型のRMinQ using S=pii; S op(S a, S b) { return min(a, b); } S e() { return {inf,inf}; } void solve(){ int n; ll k; cin >> n >> k; vi a(n); rep(i,n) cin >> a[i]; vi sa=suffix_array(a,n); vi lcp=lcp_array(a,sa); vc v(n-1); rep(i,n-1) v[i]={lcp[i],i}; segtree seg(v); auto f=[&](auto f,int l,int r,int d)->bool{ if(l>=r) return false; if(l+1==r){ if(k<=n-sa[l]-d){ rep(i,d+k) cout << a[sa[l]+i] << ' '; cout << endl; return true; }else{ k-=n-sa[l]-d; return false; } } auto [m,ind]=seg.prod(l,r-1); ll add=(ll)(m-d)*(r-l); if(k<=add){ int x=(k+r-l-1)/(r-l); rep(i,d+x) cout << a[sa[l]+i] << ' '; cout << endl; return true; } k-=add; if(f(f,l,ind+1,m)) return true; if(f(f,ind+1,r,m)) return true; return false; }; f(f,0,n,0); } //重複ありver int main(){ ios::sync_with_stdio(false); cin.tie(0); int t; cin >> t; rep(i,t) solve(); return 0; }