#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define REP(i,s,n) for(int i=(int)(s);i<(int)(n);i++) using namespace std; typedef long long int ll; typedef vector VI; typedef vector VL; typedef pair PI; const ll mod = 1e9 + 7; const int DEBUG = 1; const int N = 51; string s[N]; int n, m; pair check(int row) { int k = 0; VL t; int cur = 0; int cnt = 0; REP(i, 0, m + 1) { if (i < m && s[row][i] != '.') { if (cnt == 0) { cur = i; } cnt++; } else { k += cnt / 2; if (cnt % 2 != 0) { ll acc = 0; REP(j, 0, cnt / 2 + 1) { acc |= 1LL << (cur + 2 * j); } t.push_back(acc); } cnt = 0; } } return pair(k, t); } /** * Dinic's algorithm for maximum flow problem. * Header requirement: vector, queue * Verified by: ABC010-D(http://abc010.contest.atcoder.jp/submissions/602810) */ class Dinic { private: struct edge { int to, cap, rev; // rev is the position of reverse edge in graph[to] }; std::vector > graph; std::vector level; std::vector iter; /* Perform bfs and calculate distance from s */ void bfs(int s) { level.assign(level.size(), -1); std::queue que; level[s] = 0; que.push(s); while (! que.empty()) { int v = que.front(); que.pop(); for (int i = 0; i < graph[v].size(); ++i) { edge &e = graph[v][i]; if (e.cap > 0 && level[e.to] == -1) { level[e.to] = level[v] + 1; que.push(e.to); } } } } /* search augment path by dfs. if f == -1, f is treated as infinity. */ int dfs(int v, int t, int f) { if (v == t) { return f; } for (int &i = iter[v]; i < graph[v].size(); ++i) { edge &e = graph[v][i]; if (e.cap > 0 && level[v] < level[e.to]) { int newf = f == -1 ? e.cap : std::min(f, e.cap); int d = dfs(e.to, t, newf); if (d > 0) { e.cap -= d; graph[e.to][e.rev].cap += d; return d; } } } return 0; } public: /* v is the number of vertices (labeled from 0 .. v-1) */ Dinic(int v) : graph(v), level(v, -1), iter(v, 0) {} void add_edge(int from, int to, int cap) { graph[from].push_back((edge) {to, cap, graph[to].size()}); graph[to].push_back((edge) {from, 0, graph[from].size() - 1}); } int max_flow(int s, int t) { int flow = 0; while (1) { bfs(s); if (level[t] < 0) { return flow; } iter.assign(iter.size(), 0); int f; while ((f = dfs(s, t, -1)) > 0) { flow += f; } } } }; int calc(void) { Dinic din(n * m + 2); REP(i, 0, n) { REP(j, 0, m) { if (s[i][j] == '.') continue; int dxy[5] = {1, 0, -1, 0, 1}; REP(d, 0, 4) { int nx = i + dxy[d]; int ny = j + dxy[d + 1]; if (nx < 0 || nx >= n || ny < 0 || ny >= m) { continue; } if (s[nx][ny] != '.') { din.add_edge(i * m + j, nx * m + ny, 1); din.add_edge(nx * m + ny, i * m + j, 1); } } if ((i + j) % 2) { din.add_edge(n * m, i * m + j, 1); } else { din.add_edge(i * m + j, n * m + 1, 1); } } } return din.max_flow(n * m, n * m + 1); } int main(void){ cin >> n >> m; REP(i, 0, n) { cin >> s[i]; } int w = 0; int b = 0; REP(i, 0, n) { REP(j, 0, m) { if (s[i][j] == 'w') w++; if (s[i][j] == 'b') b++; } } int c = calc(); w -= c; b -= c; int mi = min(w, b); cout << c * 100 + mi * 8 + w + b << endl; }