#include char field[64][64]; int h, w; int dr[4] = {1, 0, -1, 0}; int dc[4] = {0, 1, 0, -1}; bool outOfRange(int r, int c) { if( not ( 0 <= r and r < h and 0 <= c and c < w ) ) return true; return false; } const int INF = (1 << 29); const int maxV = 64 * 64 * 2; std::vector< std::tuple > graph[maxV]; bool finished[maxV]; int flow[maxV][maxV], capacity[maxV][maxV]; int depth[maxV]; int src, dest; int V, E; void setupDinic() { V = 64 * 64 * 2; for(int r = 0; r < h; ++r) { for(int c = 0; c < w; ++c) { if( field[r][c] == '.' ) continue; if( field[r][c] == 'b' ) { int s = 64 * 64 - 1; int t = 64 * r + c; //printf("src to b(%d, %d)\n", r, c); graph[s].push_back(std::make_tuple(t, 1)); graph[t].push_back(std::make_tuple(s, 0)); capacity[s][t] = 1; capacity[t][s] = 0; for(int k = 0; k < 4; ++k) { int nr = r + dr[k], nc = c + dc[k]; if( outOfRange(nr, nc) ) continue; if( field[nc][nc] == '.' ) continue; int s2 = t; int t2 = 64 * 64 + 64 * nr + nc; //printf("b(%d, %d) to w(%d, %d)\n", r, c, nr, nc); graph[s2].push_back(std::make_tuple(t2, 1)); graph[t2].push_back(std::make_tuple(s2, 0)); capacity[s2][t2] = 1; capacity[t2][s2] = 0; } } if( field[r][c] == 'w' ) { int s = 64 * 64 + 64 * r + c; int t = 2 * 64 * 64 - 1; //printf("w(%d, %d) to dest\n", r, c); graph[s].push_back(std::make_tuple(t, 1)); graph[t].push_back(std::make_tuple(s, 0)); capacity[s][t] = 1; capacity[t][s] = 0; } } } // scanf("%d %d", &V, &E); // for(int i = 0; i < E; ++i) { // int s, t, c; // scanf("%d %d %d", &s, &t, &c); // graph[s].push_back(std::make_tuple(t, c)); // graph[t].push_back(std::make_tuple(s, 0)); // capacity[s][t] = c; // capacity[t][s] = 0; // } src = 64 * 64 - 1; dest = 2 * 64 * 64 - 1; } // update depth (foreach, update depth[next]) void bfs() { for(int i = 0; i < V; ++i) { depth[i] = INF; } depth[src] = 0; int limitdepth = INF; std::queue q; q.push(src); while( not q.empty() ) { int id = q.front(); q.pop(); if( id == dest ) limitdepth = depth[id]; if( depth[id] > limitdepth ) break; for(std::tuple I : graph[id]) { int next, limit; std::tie(next, limit) = I; if( limit - flow[id][next] <= 0 ) continue; if( depth[next] != INF ) continue; depth[next] = depth[id] + 1; q.push(next); } } // printf("update depth\n"); for(int i = 0; i < V; ++i) { // printf("depth[%d] : %d\n", i, depth[i]); } } // try flow once // return := one flow int dfs(int id, int fm) { if( id == dest ) return fm; if( fm == 0 ) return 0; if( finished[id] ) return 0; for(std::tuple I : graph[id]) { int next, limit; std::tie(next, limit) = I; if( not ( depth[id] < depth[next] ) ) continue; int ft = dfs(next, std::min(fm, limit - flow[id][next])); if( ft <= 0 ) continue; flow[id][next] += ft; flow[next][id] -= ft; return ft; } finished[id] = true; return 0; } int Dinic() { int total = 0; for(;;) { bfs(); for(int i = 0; i < V; ++i) finished[i] = false; int f = 0; for(;;) { int ft = dfs(src, INF); if( ft == 0 ) break; f += ft; } if( f == 0 ) break; total += f; } return total; } int main() { scanf("%d %d", &h, &w); for(int i = 0; i < h; ++i) { scanf("%s", field[i]); } setupDinic(); int num_pair = Dinic(); int ww = 0, bb = 0; for(int r = 0; r < h; ++r) { for(int c = 0; c < w; ++c) { if( field[r][c] == 'w' ) ww += 1; if( field[r][c] == 'b' ) bb += 1; } } ww -= num_pair; bb -= num_pair; printf("%d\n", 100 * num_pair + 10 * std::min(ww, bb) + std::abs(ww - bb)); return 0; }