#!/usr/bin/env python3 import time from collections import defaultdict from functools import lru_cache from itertools import dropwhile, takewhile from math import sqrt @lru_cache(maxsize=None) def sieve_of_eratosthenes(max): is_prime = [True] * (max + 1) is_prime[0] = False is_prime[1] = False i = 2 while i * i <= max: if is_prime[i]: for j in range(i * i, max + 1, i): is_prime[j] = False i += 1 return list(filter(lambda x: is_prime[x], range(max + 1))) @lru_cache(maxsize=None) def prime_factorization(n): factor = defaultdict(int) prime = sieve_of_eratosthenes(int(sqrt(n))) for p in prime: while n % p == 0: n //= p factor[p] += 1 if n > 1: factor[n] += 1 return factor @lru_cache(maxsize=None) def nim(nums): if sum(nums) == 0: True for i in range(len(nums)): for j in (2, 1): if nums[i] < j: continue tmp = list(nums) tmp[i] -= j tmp.sort(reverse=True) if nim(tuple(tmp)): return False return True N = int(input()) M = [int(x) for x in input().split()] init = [] for m in M: init.extend(prime_factorization(m).values()) init = [x % 3 for x in init] init.sort(reverse=True) if nim(tuple(init)): print("Bob") else: print("Alice")