using System; using System.Collections.Generic; using System.Linq; using System.IO; class Program { struct Nod { public long[][] A, B, S; } static Nod next(Nod x, Nod y) { var mt = new mymath(); Nod ret = new Nod(); ret.A = mt.mulmat(y.A, x.A); ret.B = mt.mulmat(x.B, y.B); ret.S = mt.addmat(mt.mulmat(x.B, mt.mulmat(y.S, x.A)), x.S); return ret; } static Nod init() { var mt = new mymath(); var ret = new Nod(); ret.A = mt.E(3); ret.B = mt.E(2); ret.S = new long[2][]; for (int i = 0; i < 2; i++) ret.S[i] = new long[3]; return ret; } static Nod init(int i) { var ret = init(); for (int j = 0; j < 2; j++) for (int k = 0; k < 3; k++) ret.S[j][k] = i * 6 + j * 3 + k; return ret; } static void Main() { var sc = new Scan(); var mt = new mymath(); int n = sc.Int; var sgA = new Segtree(n + 2, (x, y) => mt.mulmat(y, x), mt.E(3)); var sgB = new Segtree(n + 2, (x, y) => mt.mulmat(x, y), mt.E(2)); var sgP = new Segtree(n + 2, (x, y) => next(x, y), init()); for (int i = 0; i <= n; i++) sgP.update(i, init(i)); var a = sc.LongArr; var b = sc.LongArr; int q = sc.Int; for (int i = 0; i < q; i++) { var inp = sc.StrArr; int ind = int.Parse(inp[1]); Nod nod = sgP.look(ind); switch (inp[0]) { case "a": for (int j = 0; j < 3; j++) for (int k = 0; k < 3; k++) nod.A[j][k] = int.Parse(inp[j * 3 + k + 2]); sgA.update(ind, nod.A); sgP.update(ind, nod); break; case "b": for (int j = 0; j < 2; j++) for (int k = 0; k < 2; k++) nod.B[j][k] = int.Parse(inp[j * 2 + k + 2]); sgB.update(ind, nod.B); sgP.update(ind, nod); break; case "ga": DBG(mt.mulmat(sgA.run(0, ind), a)); break; case "gb": DBG(mt.addmat(mt.mulmat(sgB.run(ind + 1, n + 1), b), mt.mulmat(sgP.run(ind + 1, n + 1).S, mt.mulmat(sgA.run(0, ind + 1), a)))); break; } } } static void DBG(params T[] a) { Console.WriteLine(string.Join(" ", a)); } static void DBG(params object[] a) { Console.WriteLine(string.Join(" ", a)); } } class Scan { public int Int { get { return int.Parse(Str); } } public long Long { get { return long.Parse(Str); } } public double Double { get { return double.Parse(Str); } } public string Str { get { return Console.ReadLine().Trim(); } } public int[] IntArr { get { return StrArr.Select(int.Parse).ToArray(); } } public long[] LongArr { get { return StrArr.Select(long.Parse).ToArray(); } } public double[] DoubleArr { get { return StrArr.Select(double.Parse).ToArray(); } } public string[] StrArr { get { return Str.Split(); } } T cv(string inp) { if (typeof(T).Equals(typeof(int))) return (T)Convert.ChangeType(int.Parse(inp), typeof(T)); if (typeof(T).Equals(typeof(long))) return (T)Convert.ChangeType(long.Parse(inp), typeof(T)); if (typeof(T).Equals(typeof(double))) return (T)Convert.ChangeType(double.Parse(inp), typeof(T)); if (typeof(T).Equals(typeof(char))) return (T)Convert.ChangeType(inp[0], typeof(T)); return (T)Convert.ChangeType(inp, typeof(T)); } public void Multi(out T a) { a = cv(Str); } public void Multi(out T a, out U b) { var ar = StrArr; a = cv(ar[0]); b = cv(ar[1]); } public void Multi(out T a, out U b, out V c) { var ar = StrArr; a = cv(ar[0]); b = cv(ar[1]); c = cv(ar[2]); } public void Multi(out T a, out U b, out V c, out W d) { var ar = StrArr; a = cv(ar[0]); b = cv(ar[1]); c = cv(ar[2]); d = cv(ar[3]); } public void Multi(out T a, out U b, out V c, out W d, out X e) { var ar = StrArr; a = cv(ar[0]); b = cv(ar[1]); c = cv(ar[2]); d = cv(ar[3]); e = cv(ar[4]); } } class mymath { static int Mod = 1000000007; public void setMod(int m) { Mod = m; } public bool isprime(long a) { if (a < 2) return false; for (long i = 2; i * i <= a; i++) if (a % i == 0) return false; return true; } public bool[] sieve(int n) { var isp = new bool[n + 1]; for (int i = 2; i <= n; i++) isp[i] = true; for (int i = 2; i * i <= n; i++) if (isp[i]) for (int j = i * i; j <= n; j += i) isp[j] = false; return isp; } public List getprimes(int n) { var prs = new List(); var isp = sieve(n); for (int i = 2; i <= n; i++) if (isp[i]) prs.Add(i); return prs; } public long[][] E(int n) { var ret = new long[n][]; for (int i = 0; i < n; i++) { ret[i] = new long[n]; ret[i][i] = 1; } return ret; } public long[][] powmat(long[][] A, long n) { if (n == 0) return E(A.Length); var t = powmat(A, n / 2); if ((n & 1) == 0) return mulmat(t, t); return mulmat(mulmat(t, t), A); } public long[] mulmat(long[][] A, long[] x) { int n = A.Length, m = x.Length; var ans = new long[n]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) ans[i] = (ans[i] + x[j] * A[i][j]) % Mod; return ans; } public long[][] mulmat(long[][] A, long[][] B) { int n = A.Length, m = B[0].Length, l = B.Length; var ans = new long[n][]; for (int i = 0; i < n; i++) { ans[i] = new long[m]; for (int j = 0; j < m; j++) for (int k = 0; k < l; k++) ans[i][j] = (ans[i][j] + A[i][k] * B[k][j]) % Mod; } return ans; } public long[][] addmat(long[][] A, long[][] B) { int n = A.Length, m = A[0].Length; var ans = new long[n][]; for (int i = 0; i < n; i++) { ans[i] = new long[m]; for (int j = 0; j < m; j++) ans[i][j] = (A[i][j] + B[i][j]) % Mod; } return ans; } public long[] addmat(long[] x, long[] y) { int n = x.Length; var ans = new long[n]; for (int i = 0; i < n; i++) ans[i] = (x[i] + y[i]) % Mod; return ans; } public long powmod(long a, long b) { if (a >= Mod) return powmod(a % Mod, b); if (a == 0) return 0; if (b == 0) return 1; var t = powmod(a, b / 2); if ((b & 1) == 0) return t * t % Mod; return t * t % Mod * a % Mod; } public long gcd(long a, long b) { while (b > 0) { var t = a % b; a = b; b = t; } return a; } public long lcm(long a, long b) { return a * (b / gcd(a, b)); } } class Segtree { int n; T[] tree; Func f; T exnum; public Segtree(int m, Func f, T ex) { this.f = f; this.exnum = ex; n = 1; while (n < m) n <<= 1; tree = new T[(n << 1) - 1]; for (int i = 0; i < tree.Length; i++) tree[i] = ex; } public Segtree(int m, T ini, Func f, T ex) { this.f = f; this.exnum = ex; n = 1; while (n < m) n <<= 1; tree = new T[(n << 1) - 1]; for (int i = 0; i < tree.Length; i++) tree[i] = ini; for (int i = 0; i < m; ++i) update(i, ini); } public void update(int j, T x) { int i = j + n - 1; tree[i] = x; while (i > 0) { i = (i - 1) >> 1; tree[i] = f(tree[(i << 1) + 1], tree[(i << 1) + 2]); } } public T look(int i) { return tree[i + n - 1]; } // [s, t) public T run(int s, int t) { return query(s, t, 0, 0, n); } T query(int s, int t, int k, int l, int r) { if (r <= s || t <= l) return exnum; if (s <= l && r <= t) return tree[k]; return f(query(s, t, (k << 1) + 1, l, (l + r) >> 1), query(s, t, (k + 1) << 1, (l + r) >> 1, r)); } }