#include #include #include #include #include #include #define REP(i,s,n) for(int i=(int)(s);i<(int)(n);i++) using namespace std; typedef long long int ll; typedef vector VI; typedef vector VL; typedef pair PI; const ll mod = 1e9 + 7; /* * Sparse Table. * BiOp should be the type of a binary operator which is * associative, commutative and idempotent. * (For example, min and gcd satisfy them.) * Header Requirement: vector, cassert * Verified by: AtCoder ARC023 D (http://arc023.contest.atcoder.jp/submissions/960757) */ template class SparseTable { private: BiOp biop; std::vector > st; void create_sparse_table(int n, const std::vector &lcp) { int h = 1; while ((1 << h) < n) { ++h; } st = std::vector >(h + 1, std::vector(n)); for (int i = 0; i < n; ++i) { st[0][i] = lcp[i]; } for (int j = 1; j <= h; ++j) { for (int i = 0; i <= n - (1 << j); ++i) { st[j][i] = biop(st[j - 1][i], st[j - 1][i + (1 << (j-1))]); } } } /* * Reference: https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogFloat * Please be aware that it only works well in case of 1 <= t <= 2^24. */ static int top_bit(int t) { const float v = t; // find int(log2(v)), where v > 0.0 && finite(v) && isnormal(v) int c; // 32-bit int c gets the result; c = *(const int *) &v; // OR, for portability: memcpy(&c, &v, sizeof c); return (c >> 23) - 127; } public: /* * Initializes this sparse table. O(n log n) where n = ary.size(). */ SparseTable(BiOp biop, const std::vector &ary): biop(biop) { create_sparse_table(ary.size(), ary); } /* * Computes biop(ary[f], ary[f+1], ..., ary[s]). O(1). * Note: the interval is inclusive. */ int query(int f, int s) const { assert (f <= s); int diff = top_bit(s + 1 - f); return biop(st[diff][f], st[diff][s + 1 - (1 << diff)]); } }; const int N = 100010; string s[N]; struct cmp { bool operator () (int x, int y) const { return s[x] < s[y]; } }; struct func_min { int operator() (int x, int y) const { return min(x, y); } }; int main(void){ int n; cin >> n; assert (n <= 100000); int tot_len = 0; REP(i, 0, n) { cin >> s[i]; tot_len += s[i].length(); } assert (tot_len <= 800000); VI perm(n), inv_perm(n); REP(i, 0, n) { perm[i] = i; } sort(perm.begin(), perm.end(), cmp()); REP(i, 0, n) { inv_perm[perm[i]] = i; } int m; cin >> m; assert (m <= 300000); ll x, d; cin >> x >> d; ll lim = ll(n) * ll(n - 1); assert (0 <= x); assert (x < lim); assert (d < lim); assert (0 <= d); VI lcp(n - 1); REP(i, 0, n - 1) { int pos = 0; string &t1 = s[perm[i]]; string &t2 = s[perm[i + 1]]; int lim = min(t1.length(), t2.length()); for (; pos < lim; ++pos) { if (t1[pos] != t2[pos]) { break; } } lcp[i] = pos; } SparseTable st(func_min(), lcp); REP(loop_cnt, 0, m) { int i, j; i = (x / (n - 1)) + 1; j = (x % (n - 1)) + 1; if (i > j) { swap(i, j); } else { j++; } assert (1 <= i); assert (i < j); assert (j <= n); i--, j--; int ii = inv_perm[i]; int ij = inv_perm[j]; if (ii > ij) { swap(ii, ij); } assert (ii < ij); cout << st.query(ii, ij - 1) << endl; x = (x + d) % (ll(n) * ll(n - 1)); } }