#include using namespace std; typedef unsigned int uint; typedef long long int ll; typedef unsigned long long int ull; #define debugv(v) printf("L%d %s => ",__LINE__,#v);for(auto e:v){cout< ",__LINE__,#m);for(int x=0;x<(w);x++){cout<<(m)[x]<<" ";}cout<>=1,k++)s=(s<<1)|(u&1);for(;0>=1)cout<<(s&1);}} #define TIME chrono::system_clock::now() #define MILLISEC(t) (chrono::duration_cast(t).count()) namespace{ std::chrono::system_clock::time_point t; void tic(){t=TIME;} void toc(){fprintf(stderr,"TIME : %lldms\n",MILLISEC(TIME-t));} } template ostream& operator <<(ostream &o,const pair p){o<<"("< class hash> { public: size_t operator()(const pair& x) const{ return hash()(x.first)^hash()(x.second); } }; } // todo : typedef int_c int // capacity // TODO:マーカーの実装? class Flow{ public: size_t n; struct Arrow{ int from,to; int w_max; // TODO: leftに改名 int cap; Arrow(int from=0,int to=0,int w=1):from(from),to(to),w_max(w),cap(w){} }; vector> vertex_to; vector> vertex_from; vector arrow; Flow(int n,int m=5010):n(n),vertex_to(n),vertex_from(n){arrow.reserve(m);} void connect(int from, int to, int w_max){ vertex_to[from].push_back(arrow.size()); // toto vertex_from[to].push_back(arrow.size()); // fromfrom arrow.emplace_back(from,to,w_max); } size_t degree(int v){ return vertex_to[v].size() + vertex_from[v].size(); } size_t degree_in(int v){ return vertex_from[v].size(); } size_t degree_out(int v){ return vertex_to[v].size(); } }; // DAG int _dinic_path_dfs(Flow& flow, vector& result, const vector& dist, int u, int i_sink, int mini){ // TODO: 経路再利用 if (i_sink == u) return mini; int sumw = 0; bool term=true; for (int e : flow.vertex_to[u]){ Flow::Arrow& a = flow.arrow[e]; if (a.w_max > 0 && dist[u]>dist[a.to]){ int w ; if (mini < 0) w = a.w_max; else w = min(a.w_max, mini); w = _dinic_path_dfs(flow, result, dist, a.to, i_sink, w); if (w==-1) continue; a.w_max -= w; result[a.to] += w; //printf("%d->%d (%d) : w=%d mini=%d \n",a.from,a.to,a.w_max+w,w,mini); sumw +=w; mini -=w; term = false; } } for (int e : flow.vertex_from[u]){ Flow::Arrow& a = flow.arrow[e]; if (a.cap>a.w_max && dist[u]>dist[a.from]){ int w ; if (mini < 0) w = a.cap-a.w_max; else w = min(a.cap-a.w_max, mini); w = _dinic_path_dfs(flow, result, dist, a.from, i_sink, w); if (w==-1) continue; a.w_max += w; result[a.to] -= w; //printf("%d<-%d (%d) : w=%d mini=%d \n",a.from,a.to,a.w_max-w,w,mini); sumw +=w; mini -=w; term = false; } } return term ? -1 : sumw; } // flowは書き換えられる. void dinic(Flow &flow, vector& result, int i_source, int i_sink){ assert(i_source != i_sink); result.resize(flow.n); int distbegin=0; vector dist(flow.n); queue q; for (int distbegin=0; ; distbegin+=flow.n){ safebreak(); q.emplace(i_sink); // bfsはsinkからsourceへの距離を計算. dist[i_sink] = distbegin+1; while (!q.empty()){ int v = q.front(); q.pop(); for (int ie : flow.vertex_from[v]){ const Flow::Arrow& e = flow.arrow[ie]; if (0 // map,int> or unordered_map bool _solve_dinic_edge(MAP_PI& result_edge, int i_source, int i_sink){ vector resflow(flow.n,0); dinic(flow, resflow, ss , ss+1); dinic(flow, resflow, ss , i_sink); dinic(flow, resflow, i_source, ss+1); dinic(flow, resflow, i_source, i_sink); for (int e : flow.vertex_to[ss]){ const Flow::Arrow& a = flow.arrow[e]; //printf("%d->%d (%d)\n",a.from,a.to,a.w_max);cout.flush(); if (0 < a.w_max) return false; } for (int u=0; u v if (a.to >= flow.n-2) continue; const Flow::Arrow& c = flow.arrow[ea+1]; // S -> v if (0 < c.w_max) return false; int floow = c.cap + a.cap - c.w_max - a.w_max; // TODO: if (0 < floow) result_edge[make_pair(u,a.to)] += floow; } } return true; } // connect操作を行うので,2回以上呼び出すのは禁止 // sumflow = sink,flowの流量が既知 template bool _solve_dinic_edge_known(MAP_PI& result_edge, int i_source, int i_sink, int sumflow){ vector resflow(flow.n,0); flow.connect(ss, i_source, sumflow); flow.connect(i_sink, ss+1, sumflow); dinic(flow, resflow, ss , ss+1); for (int e : flow.vertex_to[ss]){ const Flow::Arrow& a = flow.arrow[e]; //printf("%d->%d (%d)\n",a.from,a.to,a.w_max);cout.flush(); if (0 < a.w_max) return false; } for (int u=0; u v if (a.to >= flow.n-2) continue; const Flow::Arrow& c = flow.arrow[ea+1]; // S -> v if (0 < c.w_max) return false; int floow = c.cap + a.cap - c.w_max - a.w_max; // TODO: if (0 < floow) result_edge[make_pair(u,a.to)] += floow; } } return true; } public: bool solve_dinic_edge(map,int>& result_edge, int i_source, int i_sink, int sumflow = -1){ return sumflow<0 ? _solve_dinic_edge(result_edge, i_source, i_sink) : _solve_dinic_edge_known(result_edge, i_source, i_sink, sumflow); } bool solve_dinic_edge(unordered_map,int>& result_edge, int i_source, int i_sink, int sumflow = -1){ return sumflow<0 ? _solve_dinic_edge(result_edge, i_source, i_sink) : _solve_dinic_edge_known(result_edge, i_source, i_sink, sumflow); } }; /** // dinic sample int main(){ int i,j,k; int x,y,a,b; Flow graph(6); graph.connect(0,1,1); graph.connect(1,4,1); graph.connect(4,5,1); graph.connect(0,3,1); graph.connect(3,4,1); graph.connect(1,2,1); graph.connect(2,5,1); vector result(6,0); dinic(graph,result,0,5); debugv(result); // FlowMinMax graph2(3); // // graph2.connect(0,1,1,2); // graph2.connect(1,2,3,4); // // vector result2(3,0); // cout << (graph2.solve_dinic(result2,0,2) ? "true" : "false") << endl; // // debugv(result2); return 0; } /**/ /**/ int width,height; int m,n; int field[10010]; int commands[30010]; int main(){ int i,j,k; int x,y,a,b; tic(); cin >> height >> width >> n; cin.ignore(); int nblocks=0; // X座標にブロックがいくつ積まれているか、を記録する。 // stringを保持する必要はない。 for (y = 0; y < height; y++){ string s; cin >> s; for (x = 0; x < width; x++){ field[x] += s[x]=='#'; } } for (x = 0; x < width; x++){ nblocks += field[x]; } for (i = 0; i < n; i++){ scanf("%d",commands+i); } // A _ B _ C // | | ----> | | ----> [sink] // [source] -> | | | | // | | | | // |_pack |_field // // A : [1,9] (packは[1,9]個のブロックを持つ) // B : [0,3] (packは3x3の容量を持つ) // C : [#,#] (x列には#個のブロックが積み上がっている) FlowMinMax flow(1 + n + width + 1); const int i_source = 0; const int i_sink = 1; for (i = 0; i < n; i++){ // A edge flow.connect(i_source, 2+i, 1, 9); int left = commands[i]; for (j = 0; j < 3; j++){ // B edge flow.connect(2+i, 2+n+ left+j, 0, 3); } } for (x = 0; x < width; x++){ // C edge flow.connect(2+n+x, i_sink, field[x], field[x]); } //for (Flow::Arrow& ar : flow.flow.arrow){ // if (ar.w_max == 0) continue; // printf("%d -> %d\n",ar.from,ar.to); //} unordered_map,int> nagare; if (!flow.solve_dinic_edge(nagare, i_source, i_sink, nblocks)){ abort(); cout << "warn" << endl; } //debugv(nagare); int hako[3]; for (i = 0; i < n; i++){ for (j = 0; j < 3; j++){ hako[j] = nagare[make_pair( 2+i, 2+n+ commands[i]+j )]; } for (y = 3; 0 < y; y--){ for (x = 0; x < 3; x++){ if (y<=hako[x]){ putchar('#'); }else{ putchar('.'); } } putchar('\n'); } } toc(); return 0; } /* 2 4 3 ..#. ..## 0 1 0 */