/*#ifdef __GNUC__ #pragma GCC optimize ("O3") #pragma GCC target ("avx") #endif */ #define _USE_MATH_DEFINES #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include//assert(); #include ///////// #define REP(i, x, n) for(int i = x; i < n; i++) #define rep(i,n) REP(i,0,n) #define P(p) cout<<(p)< ///////// #ifdef getchar_unlocked #define mygc(c) (c)=getchar_unlocked() #else #define mygc(c) (c)=getchar() #endif #ifdef putchar_unlocked #define mypc(c) putchar_unlocked(c) #else #define mypc(c) putchar(c) #endif ///////// typedef long long LL; typedef long double LD; typedef unsigned long long ULL; ///////// using namespace::std; ///////// #ifdef _DEBUG #define DEBUG_BOOL(b) assert(b) #else #define DEBUG_BOOL(b) #endif /////数値読み込み #define ENABLE_READER_ON(T) \ inline void reader(T &x){int k;x = 0;bool flag = true;\ while(true){mygc(k);\ if( k == '-'){flag = false;break;}if('0' <= k && k <= '9'){x = k - '0';break;}\ }\ if( flag ){while(true){mygc(k);if( k<'0' || '9' inline T gcd(T a, T b){return b == 0 ? a : gcd(b, a % b);} // 最小公倍数 template inline T lcm(T a, T b){return a * b / gcd(a, b);} //////////////////////////////// inline void solve(){ int N,L; reader(N);//総羽 reader(L);//境界 /* 素数p (N-1)*P <= L pでの数 (L-(N-1)P)+1個ある */ const int maxNum = L/(N-1)+1; vector isPrime(maxNum,false); vector prime; ULL ans = 0; for(int i=2;i