#ifdef __GNUC__ #pragma GCC optimize ("O3") #pragma GCC target ("avx") #endif #define _USE_MATH_DEFINES #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include//assert(); #include ///////// #define REP(i, x, n) for(int i = x; i < n; i++) #define rep(i,n) REP(i,0,n) #define P(p) cout<<(p)< ///////// #ifdef getchar_unlocked #define mygc(c) (c)=getchar_unlocked() #else #define mygc(c) (c)=getchar() #endif #ifdef putchar_unlocked #define mypc(c) putchar_unlocked(c) #else #define mypc(c) putchar(c) #endif ///////// typedef long long LL; typedef long double LD; typedef unsigned long long ULL; ///////// using namespace::std; ///////// #ifdef _DEBUG #define DEBUG_BOOL(b) assert(b) #else #define DEBUG_BOOL(b) #endif /////数値読み込み #define ENABLE_READER_ON(T) \ inline void reader(T &x){int k;x = 0;bool flag = true;\ while(true){mygc(k);\ if( k == '-'){flag = false;break;}if('0' <= k && k <= '9'){x = k - '0';break;}\ }\ if( flag ){while(true){mygc(k);if( k<'0' || '9' inline T gcd(T a, T b){return b == 0 ? a : gcd(b, a % b);} // 最小公倍数 template inline T lcm(T a, T b){return a * b / gcd(a, b);} //////////////////////////////// vector< vector > NCK(32,vector(32,-1)); ULL nCk(int n,int k){ if( k == 0 || k == n ){ return 1; } if( k == 1 || k == n-1 ){ return n; } k = min(n-k,k); if( k < 0 ) return 0; if( NCK[n][k] != -1 ){ return NCK[n][k]; } NCK[n][k] = nCk(n-1,k-1) + nCk(n-1,k); return NCK[n][k]; } ULL nCk_2(int n,int k){ k = min(n-k,k); if( k < 0 ) return 0; ULL ans = 1; for(int i=1;i<=k;++i){ ans = ans * n / i; --n; } return ans; } inline void solve(){ int X; reader(X); ULL num = nCk(31,X); writer(num); writer(" "); ULL ans = 0x7FFFFFFF; ans *= nCk(30,X-1); writer(ans); } int main(void){ std::cin.tie(0); std::ios::sync_with_stdio(false); std::cout << std::fixed;//小数を10進数表示 cout << setprecision(16);//小数をいっぱい表示する。16? solve(); return 0; }