#ifdef __GNUC__ #pragma GCC optimize ("O3") #pragma GCC target ("avx") #endif #define _USE_MATH_DEFINES #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include//assert(); #include ///////// #define REP(i, x, n) for(int i = x; i < n; i++) #define rep(i,n) REP(i,0,n) #define P(p) cout<<(p)< #define MAIN_INIT std::cin.tie(0); \ std::ios::sync_with_stdio(false);\ std::cout << std::fixed;//小数を10進数表示 ///////// #ifdef getchar_unlocked #define mygc(c) (c)=getchar_unlocked() #else #define mygc(c) (c)=getchar() #endif #ifdef putchar_unlocked #define mypc(c) putchar_unlocked(c) #else #define mypc(c) putchar(c) #endif ///////// typedef long long LL; typedef long double LD; typedef unsigned long long ULL; ///////// using namespace::std; ///////// #ifdef _DEBUG #define DEBUG_BOOL(b) assert(b) #else #define DEBUG_BOOL(b) #endif /////数値読み込み #define ENABLE_READER_ON(T) \ inline void reader(T &x){int k;x = 0;bool flag = true;\ while(true){mygc(k);\ if( k == '-'){flag = false;break;}if('0' <= k && k <= '9'){x = k - '0';break;}\ }\ if( flag ){while(true){mygc(k);if( k<'0' || '9' inline T gcd(T a, T b){return b == 0 ? a : gcd(b, a % b);} // 最小公倍数 template inline T lcm(T a, T b){return a * b / gcd(a, b);} //////////////////////////////// struct POS{ int h; int w; }; inline void solve(){ vector D(7); for(int i=0;i<7;++i){ reader(D[i]); } sort(D.begin(),D.end()); vector used(7,false); for(int A1=0;A1<4;++A1){ for(int A2 = A1+1;A2<5;++A2){ if( D[A1] < D[A2] ){ for(int A3 = A2+1;A3<6;++A3){ if( D[A2] < D[A3] ){ for(int A4 = A3+1;A4<7;++A4){ if( D[A3] < D[A4] ){ vector B; used[A1] = true; used[A2] = true; used[A3] = true; used[A4] = true; for(int i=0;i<7;++i){ if( used[i] == false ){ B.push_back(D[i]); } } if( ( ( ( D[A1] < B[0] && D[A2] < B[0]) || (D[A1] > B[0] && D[A2] > B[0] ) ) && ( ( D[A2] < B[1] && D[A3] < B[1]) || (D[A2] > B[1] && D[A3] > B[1] ) ) && ( ( D[A3] < B[2] && D[A4] < B[2]) || (D[A3] > B[2] && D[A4] > B[2] ) ) )|| ( ( ( D[A1] < B[0] && D[A2] < B[0]) || (D[A1] > B[0] && D[A2] > B[0] ) ) && ( ( D[A2] < B[2] && D[A3] < B[2]) || (D[A2] > B[2] && D[A3] > B[2] ) ) && ( ( D[A3] < B[1] && D[A4] < B[1]) || (D[A3] > B[1] && D[A4] > B[1] ) ) )|| ( ( ( D[A1] < B[1] && D[A2] < B[1]) || (D[A1] > B[1] && D[A2] > B[1] ) ) && ( ( D[A2] < B[0] && D[A3] < B[0]) || (D[A2] > B[0] && D[A3] > B[0] ) ) && ( ( D[A3] < B[2] && D[A4] < B[2]) || (D[A3] > B[2] && D[A4] > B[2] ) ) )|| ( ( ( D[A1] < B[1] && D[A2] < B[1]) || (D[A1] > B[1] && D[A2] > B[1] ) ) && ( ( D[A2] < B[2] && D[A3] < B[2]) || (D[A2] > B[2] && D[A3] > B[2] ) ) && ( ( D[A3] < B[0] && D[A4] < B[0]) || (D[A3] > B[0] && D[A4] > B[0] ) ) )|| ( ( ( D[A1] < B[2] && D[A2] < B[2]) || (D[A1] > B[2] && D[A2] > B[2] ) ) && ( ( D[A2] < B[0] && D[A3] < B[0]) || (D[A2] > B[0] && D[A3] > B[0] ) ) && ( ( D[A3] < B[1] && D[A4] < B[1]) || (D[A3] > B[1] && D[A4] > B[1] ) ) )|| ( ( ( D[A1] < B[2] && D[A2] < B[2]) || (D[A1] > B[2] && D[A2] > B[2] ) ) && ( ( D[A2] < B[1] && D[A3] < B[1]) || (D[A2] > B[1] && D[A3] > B[1] ) ) && ( ( D[A3] < B[0] && D[A4] < B[0]) || (D[A3] > B[0] && D[A4] > B[0] ) ) ) ) { writer("YES");return; } used[A1] = false; used[A2] = false; used[A3] = false; used[A4] = false; } } } } } } } writer("NO"); } int main(void){ MAIN_INIT; cout << setprecision(16);//小数をいっぱい表示する。16? solve(); return 0; }