#ifdef __GNUC__ #pragma GCC optimize ("O3") #pragma GCC target ("avx") #endif #define _USE_MATH_DEFINES #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include//assert(); #include ///////// #define REP(i, x, n) for(int i = x; i < n; i++) #define rep(i,n) REP(i,0,n) #define P(p) cout<<(p)< #define MAIN_INIT std::cin.tie(0); \ std::ios::sync_with_stdio(false);\ std::cout << std::fixed;//小数を10進数表示 ///////// #ifdef getchar_unlocked #define mygc(c) (c)=getchar_unlocked() #else #define mygc(c) (c)=getchar() #endif #ifdef putchar_unlocked #define mypc(c) putchar_unlocked(c) #else #define mypc(c) putchar(c) #endif ///////// typedef long long LL; typedef long double LD; typedef unsigned long long ULL; ///////// using namespace::std; ///////// #ifdef _DEBUG #define DEBUG_BOOL(b) assert(b) #else #define DEBUG_BOOL(b) #endif /////数値読み込み #define ENABLE_READER_ON(T) \ inline void reader(T &x){int k;x = 0;bool flag = true;\ while(true){mygc(k);\ if( k == '-'){flag = false;break;}if('0' <= k && k <= '9'){x = k - '0';break;}\ }\ if( flag ){while(true){mygc(k);if( k<'0' || '9' inline T gcd(T a, T b){return b == 0 ? a : gcd(b, a % b);} // 最小公倍数 template inline T lcm(T a, T b){return a * b / gcd(a, b);} //////////////////////////////// inline bool isKado(int& a,int& b,int& c){ return (a != c) && ( (a > b && c > b ) || (a < b && c < b) ); } inline void solve(){ vector D(7); for(int i=0;i<7;++i){ reader(D[i]); } sort(D.begin(),D.end()); bool flag; do{ flag = true; for(int i=0;i<5;++i){ if( D[i] >= D[i+2] ){ flag = false; break; } } if( flag == false ) continue; flag = true; for(int i=0;i<5;++i){ if( ! isKado(D[i],D[i+1],D[i+2]) ){ flag = false; break; } } if( flag ){ writer("YES");return; } }while( next_permutation(D.begin(), D.end() ) ); writer("NO"); } int main(void){ MAIN_INIT; cout << setprecision(16);//小数をいっぱい表示する。16? solve(); return 0; }