package no109a; import java.util.ArrayList; import java.util.Arrays; import java.util.Scanner; public class Main { public static void main(String[] args) { ArrayList primes = Sieve.primeList((int) Math.sqrt(1_000_000_000) + 2); Scanner sc = new Scanner(System.in); int t = sc.nextInt(); for(int tt=0;tt= 2) { ans = 0; }else{ long div = 1; for(int i=n+1;i<=m-1;i++) { div = div * i % m; } ans = (m - 1) * modInv(div, m) % m; } } System.out.println(ans); } } public static long modpow(long x,long n,long mod) { long res = 1; while(n > 0) { if ((n & 1) > 0) { res = (res * x) % mod; } x = (x * x) % mod; n/=2; } return res; } public static long modInv(long x,long modP) { return modpow(x, modP-2, modP); } } class Sieve { public static boolean[] isPrimeArray(int max) { boolean[] isPrime = new boolean[max+1]; Arrays.fill(isPrime, true); isPrime[0] = isPrime[1] = false; for(int i=2;i*i<=max;i++) { if (isPrime[i]) { int j = i * 2; while(j<=max) { isPrime[j] = false; j += i; } } } return isPrime; } public static ArrayList primeList(int max) { boolean[] isPrime = isPrimeArray(max); ArrayList primeList = new ArrayList(); for(int i=2;i<=max;i++) { if (isPrime[i]) { primeList.add(i); } } return primeList; } public static ArrayList primeFactorL(ArrayList primeList,long num) { ArrayList ret = new ArrayList(); for(int p:primeList) { while(num % p == 0) { num /= p; ret.add((long) p); } } if (num > 1) { ret.add(num); } return ret; } }