#include "bits/stdc++.h" using namespace std; typedef long long ll; typedef unsigned long long ull; typedef vector veci; typedef vector vecs; //template using Hash=unordered_map; #define REP(i, a, n) for(ll i = a; i < (ll)n; i++) #define RREP(i, a, n) for(ll i = n-1; i >= a; i--) #define rep(i, n) REP(i, 0, n) #define rrep(i, n) RREP(i, 0, n) #define MD 1000000007 template T read(){T a;cin >> a;return a;} template void read(T& a){cin >> a;} template void rarr(T a, int n){for(int i = 0; i < n; i++) {cin >> a[i];}} template void write(T a){cout << a << endl;} template void writes(vector a, const char* c = " "){cout << a[0];for(int i = 1; i < (int)a.size(); i++)cout << c << a[i];cout << endl;;} void write(double a){cout << fixed << setprecision(12) << a << endl;} void write(long double a){cout << fixed << setprecision(12) << a << endl;} template void warr(T a, int n, const char* c = " "){cout << a[0];for(int i = 1; i < n; i++)cout << c << a[i];cout << endl;} void split(string s, string delim, veci& result){result.clear();string::size_type pos = 0;while(pos != string::npos){string::size_type p = s.find(delim, pos);if(p == string::npos){result.push_back(atoi(s.substr(pos).data()));break;}else {result.push_back(atoi(s.substr(pos, p - pos).data()));}pos = p + delim.size();}} void split(string s, string delim, vecs& result){result.clear();string::size_type pos = 0;while(pos != string::npos){string::size_type p = s.find(delim, pos);if(p == string::npos){result.push_back(s.substr(pos));break;}else {result.push_back(s.substr(pos, p - pos));}pos = p + delim.size();}} ll gcd(ll a, ll b){while(true){ll k = a % b;if(k == 0)return b;a = b;b = k;}} ll comb(ll n, ll m){ll p=1;m=min(m,n-m);for(ll i=1;i<=m;i++){p*=n-i+1;p/=i;}return p;} typedef unsigned long long Num; struct Matrix { vector > v, w; static Num MOD; Matrix() {} Matrix(int n, int m): v(n, vector(m)) { assert(n > 0 && m > 0); } inline int height() const { return (int)v.size(); } inline int width() const { return (int)v[0].size(); } inline Num& at(int i, int j) { assert(0 <= i && i < height() && 0 <= j && j < width()); return v[i][j]; } inline const Num& at(int i, int j) const { assert(0 <= i && i < height() && 0 <= j && j < width()); return v[i][j]; } static Matrix identity(int n) { Matrix A(n, n); rep(i, n) A.at(i, i) = 1; return A; } inline static Matrix identity(const Matrix& A) { assert(A.height() == A.width()); return identity(A.height()); } Matrix& operator*=(const Matrix& B) { int n = height(), m = B.width(), p = B.height(); assert(p == width()); w.resize(n, vector(m, 0)); rep(i, n) rep(j, m) { //MOD = 1000000007の場合、1000000012000000036となり、 //2^64にオーバーフローするのは2^64-1-1000000006^2くらいで、それは最上位4bitが立っているから //!MODが違う場合、書き換えること! Num x = 0; rep(k, p) { x += at(i, k) * B.at(k, j); //if((x >> 60) == 0xf) x %= MOD; } x %= MOD; w[i][j] = x; } v.swap(w); return *this; } Matrix& operator+=(const Matrix& B) { int n = height(), m = width(); assert(n == B.height() && m == B.width()); rep(i, n) rep(j, m) { at(i, j) += B.at(i, j); if(at(i, j) >= MOD) at(i, j) -= MOD; } return *this; } void undomult() { v.swap(w); } }; Num Matrix::MOD=1000000007ULL; ostream& operator<<(ostream& o, const Matrix& A) { int n = A.height(), m = A.width(); rep(i, n) { o << "["; rep(j, m) o << A.at(i, j) << (j+1 == m ? "]\n" : ","); } return o; } /* ジェネリックなべき乗算 */ template Mat operator^(const Mat& t, ll k) { Mat A = t, B = Mat::identity(t); while(k) { if(k & 1) { B *= A; } A *= A; k >>= 1; } return B; } int main(void) { int n; Matrix mat(2,2); mat.at(0,0)=1;mat.at(0,1)=3; mat.at(1,0)=1;mat.at(1,1)=1; cin>>n; if(n==0)write(1),exit(0); Matrix::MOD=1e3; mat=mat^n; write((mat.at(0,0)*2+1000-((n+1)%2))%1000); return 0; }