#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::Read; #[allow(dead_code)] fn getline() -> String { let mut ret = String::new(); std::io::stdin().read_line(&mut ret).ok().unwrap(); ret } fn get_word() -> String { let mut stdin = std::io::stdin(); let mut u8b: [u8; 1] = [0]; loop { let mut buf: Vec = Vec::with_capacity(16); loop { let res = stdin.read(&mut u8b); if res.unwrap_or(0) == 0 || u8b[0] <= b' ' { break; } else { buf.push(u8b[0]); } } if buf.len() >= 1 { let ret = String::from_utf8(buf).unwrap(); return ret; } } } #[allow(dead_code)] fn get() -> T { get_word().parse().ok().unwrap() } /** * Segment Tree. This data structure is useful for fast folding on intervals of an array * whose elements are elements of monoid M. Note that constructing this tree requires the identity * element of M and the operation of M. * Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581) */ struct SegTree { n: usize, dat: Vec, op: BiOp, e: I, } impl SegTree where BiOp: Fn(I, I) -> I, I: Copy { pub fn new(n_: usize, op: BiOp, e: I) -> Self { let mut n = 1; while n < n_ { n *= 2; } // n is a power of 2 SegTree {n: n, dat: vec![e; 2 * n - 1], op: op, e: e} } /* ary[k] <- v */ pub fn update(&mut self, idx: usize, v: I) { let mut k = idx + self.n - 1; self.dat[k] = v; while k > 0 { k = (k - 1) / 2; self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]); } } /* l,r are for simplicity */ fn query_sub(&self, a: usize, b: usize, k: usize, l: usize, r: usize) -> I { // [a,b) and [l,r) intersects? if r <= a || b <= l { return self.e; } if a <= l && r <= b { return self.dat[k]; } let vl = self.query_sub(a, b, 2 * k + 1, l, (l + r) / 2); let vr = self.query_sub(a, b, 2 * k + 2, (l + r) / 2, r); (self.op)(vl, vr) } /* [a, b] (note: inclusive) */ pub fn query(&self, a: usize, b: usize) -> I { self.query_sub(a, b + 1, 0, 0, self.n) } } /// Coordinate compression /// Returns a vector of usize, with i-th element the "rank" of a[i] in a. /// The property forall i. inv_map[ret[i]] == a[i] holds. fn coord_compress(a: &[T]) -> (Vec, Vec<&T>) { let n = a.len(); let mut cp: Vec<(&T, usize)> = (0 .. n).map(|i| (&a[i], i)).collect(); cp.sort(); let mut inv_map = Vec::new(); let mut prev: Option<&T> = None; let mut ret = vec![0; n]; let mut cnt = 0; for (v, i) in cp { if prev == Some(v) { ret[i] = cnt - 1; continue; } ret[i] = cnt; inv_map.push(v); prev = Some(v); cnt += 1; } for i in 0 .. n { assert_eq!(*inv_map[ret[i]], a[i]); } (ret, inv_map) } fn calc_three_steps(a: &[usize]) -> Vec { let n = a.len(); // Shifted by 1 (right) to avoid subtraction underflow let mut st = SegTree::new(n + 1, |x, y| x + y, 0); let mut st_sq = SegTree::new(n + 1, |x, y| x + y, 0); let mut ret = vec![0; n]; for i in 0 .. n { let tmp = st.query(a[i] + 1, a[i] + 1) + 1; let stsum = st.query(1, a[i]); ret[i] = (stsum * stsum - st_sq.query(1, a[i])) / 2; st.update(a[i] + 1, tmp); st_sq.update(a[i] + 1, tmp * tmp); } ret } fn calc_three_any(a: &[usize]) -> Vec { let n = a.len(); // Shifted by 1 (right) to avoid subtraction underflow let mut st = SegTree::new(n + 1, |x, y| x + y, 0); let mut st_sq = SegTree::new(n + 1, |x, y| x + y, 0); let mut ret = vec![0; n]; for i in 0 .. n { let tmp = st.query(a[i] + 1, a[i] + 1) + 1; st.update(a[i] + 1, tmp); st_sq.update(a[i] + 1, tmp * tmp); } for i in 0 .. n { let stsum = st.query(1, a[i]); ret[i] = (stsum * stsum - st_sq.query(1, a[i])) / 2; } ret } // Finds #{(j, k) | j < i < k, a[j] < a[i] > a[k], a[j] != a[k]} for every i. fn calc_max_aux(a: &[i64]) -> Vec { let n = a.len(); let (mut a, _) = coord_compress(a); let three = calc_three_steps(&a); let mut ret = calc_three_any(&a); a.reverse(); let three_rev = calc_three_steps(&a); for i in 0 .. n { ret[i] += -three[i] - three_rev[n - 1 - i]; } ret } // Precomputation // Counts how many kadomatsu seqs. with the center a[i] can be made. // O(n * log(n)) fn calc_aux(a: &[i64]) -> Vec { let n = a.len(); let mut aux: Vec = calc_max_aux(a); let mut a = a.to_vec(); for v in a.iter_mut() { *v *= -1; } let res2 = calc_max_aux(&a); for i in 0 .. n { aux[i] += res2[i]; } aux } fn solve() { let n = get(); let a: Vec = (0 .. n).map(|_| get()).collect(); let aux = calc_aux(&a); const INF: i64 = 1 << 60; let mut acc = vec![(0, 0); n]; for i in 0 .. n { acc[i] = (a[i], aux[i]); } acc.push((-INF, 0)); acc.sort(); for i in 0 .. n + 1 { acc[i].1 += if i == 0 { 0 } else { acc[i - 1].1 }; } let q = get(); for _ in 0 .. q { let l: i64 = get(); let h: i64 = get(); let upper = acc.binary_search(&(h, INF)).unwrap_err(); let lower = acc.binary_search(&(l, -INF)).unwrap_err(); println!("{}", acc[upper - 1].1 - acc[lower - 1].1); } } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); }