#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; fn getline() -> String { let mut ret = String::new(); std::io::stdin().read_line(&mut ret).ok().unwrap(); ret } /// Binary Indexed Tree (Fenwick Tree). Holds an array of type T. /// T is a commutative monoid. Indices are 1 .. n. /// Verified by yukicoder No.404 (http://yukicoder.me/submissions/155373) struct BIT { n: usize, ary: Vec, e: T, } impl> BIT { fn new(n: usize, e: T) -> Self { let n = n.next_power_of_two(); BIT { n: n, ary: vec![e.clone(); n + 1], e: e } } /** * gets the sum in [1 .. idx] * @param idx * @return sum */ fn accum(&self, mut idx: usize) -> T { let mut sum = self.e.clone(); while idx > 0 { sum += self.ary[idx].clone(); idx &= idx - 1; } sum } /** * performs data[idx] += val; */ fn add(&mut self, mut idx: usize, val: U) where T: std::ops::AddAssign { assert!(idx > 0); let n = self.n; while idx <= n { self.ary[idx] += val.clone(); idx += (idx as i64 & (-(idx as i64))) as usize; } } /// Make sure that 1 <= idx <= n. #[allow(unused)] fn single(&self, idx: usize) -> T where T: std::ops::Sub { self.accum(idx) - self.accum(idx - 1) } } /// This implementation of AddAssign is useful when you want to make a 2D BIT. impl std::ops::AddAssign<(usize, U)> for BIT where T: std::ops::AddAssign, T: std::ops::AddAssign { fn add_assign(&mut self, (idx, val): (usize, U)) { self.add(idx, val); } } /// Coordinate compression /// Returns a vector of usize, with i-th element the "rank" of a[i] in a. /// The property forall i. inv_map[ret[i]] == a[i] holds. fn coord_compress(a: &[T]) -> (Vec, Vec<&T>) { let n = a.len(); let mut cp: Vec<(&T, usize)> = (0 .. n).map(|i| (&a[i], i)).collect(); cp.sort(); let mut inv_map = Vec::with_capacity(n); let mut prev: Option<&T> = None; let mut ret = vec![0; n]; let mut cnt = 0; for (v, i) in cp { if prev == Some(v) { ret[i] = cnt - 1; continue; } ret[i] = cnt; inv_map.push(v); prev = Some(v); cnt += 1; } (ret, inv_map) } fn calc_three_steps(a: &[usize]) -> Vec { let n = a.len(); // Shifted by 1 (right) to avoid subtraction underflow let mut st = BIT::new(n, 0); let mut st_sq = BIT::new(n, 0); let mut ret = vec![0; n]; for i in 0 .. n { let tmp = st.single(a[i] + 1); let stsum = st.accum(a[i]); ret[i] = (stsum * stsum - st_sq.accum(a[i])) / 2; st += (a[i] + 1, 1); // (x + 1)^2 - x^2 = 2 * x + 1 st_sq += (a[i] + 1, 2 * tmp + 1); } ret } fn calc_three_any(a: &[usize]) -> Vec { let n = a.len(); // Shifted by 1 (right) to avoid subtraction underflow let mut st = vec![0; n + 1]; let mut st_sq = vec![0; n + 1]; let mut ret = vec![0; n]; for i in 0 .. n { let tmp = st[a[i] + 1] + 1; st[a[i] + 1] = tmp; st_sq[a[i] + 1] = tmp * tmp; } // acc for i in 0 .. n { st[i + 1] += st[i]; st_sq[i + 1] += st_sq[i]; } for i in 0 .. n { let stsum = st[a[i]]; ret[i] = (stsum * stsum - st_sq[a[i]]) / 2; } ret } // Finds #{(j, k) | j < i < k, a[j] < a[i] > a[k], a[j] != a[k]} for every i. fn calc_max_aux(a: &[i32], ret: &mut [i64]) { let n = a.len(); let (mut a, _) = coord_compress(a); let three = calc_three_steps(&a); let any = calc_three_any(&a); a.reverse(); let three_rev = calc_three_steps(&a); for i in 0 .. n { ret[i] += any[i] -three[i] - three_rev[n - 1 - i]; } } // Precomputation // Counts how many kadomatsu seqs. with the center a[i] can be made. // O(n * log(n)) fn calc_aux(a: &[i32]) -> Vec { let n = a.len(); let mut aux: Vec = vec![0; n]; calc_max_aux(a, &mut aux); let mut a = a.to_vec(); for v in a.iter_mut() { *v *= -1; } calc_max_aux(&a, &mut aux); aux } fn main() { let line = getline(); let n = line.trim().parse().ok().unwrap(); let line = getline(); let a: Vec = line.trim().split(" ").map(|s| s.parse().ok().unwrap()) .collect(); let aux = calc_aux(&a); let mut acc = vec![(0, 0); n + 1]; for i in 0 .. n { acc[i] = (a[i], aux[i]); } acc[n] = (-1 << 30, 0); acc.sort(); let acc0: Vec = acc.iter().map(|&v| 2 * v.0 as i64).collect(); let mut acc1: Vec = acc.iter().map(|&v| v.1).collect(); for i in 0 .. n + 1 { acc1[i] += if i == 0 { 0 } else { acc1[i - 1] }; } let line = getline(); let q = line.trim().parse().ok().unwrap(); for _ in 0 .. q { let line = getline(); let readvec: Vec = line.trim().split(" ").map(|s| s.parse().ok().unwrap()) .collect(); let l: i64 = readvec[0]; let h: i64 = readvec[1]; let upper = match acc0.binary_search(&(2 * h + 1)) { Ok(v) => v, Err(v) => v, }; let lower = match acc0.binary_search(&(2 * l - 1)) { Ok(v) => v, Err(v) => v, }; println!("{}", acc1[upper - 1] - acc1[lower - 1]); } }