// need #include #include // data structure #include //#include #include #include #include #include #include #include #include //#include //#include #include #include #include //#include #include // stream //#include //#include //#include // etc #include #include #include //#include #include #include #include #define INIT std::ios::sync_with_stdio(false);std::cin.tie(0); #define VAR(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__); template void MACRO_VAR_Scan(T& t) { std::cin >> t; } templatevoid MACRO_VAR_Scan(First& first, Rest&...rest) { std::cin >> first; MACRO_VAR_Scan(rest...); } #define VEC_ROW(type, n, ...)std::vector __VA_ARGS__;MACRO_VEC_ROW_Init(n, __VA_ARGS__); for(int i=0; i void MACRO_VEC_ROW_Init(int n, T& t) { t.resize(n); } templatevoid MACRO_VEC_ROW_Init(int n, First& first, Rest&...rest) { first.resize(n); MACRO_VEC_ROW_Init(n, rest...); } template void MACRO_VEC_ROW_Scan(int p, T& t) { std::cin >> t[p]; } templatevoid MACRO_VEC_ROW_Scan(int p, First& first, Rest&...rest) { std::cin >> first[p]; MACRO_VEC_ROW_Scan(p, rest...); } #define OUT(d) std::cout< c(n);for(auto& i:c)std::cin>>i; #define MAT(type, c, m, n) std::vector> c(m, std::vector(n));for(auto& r:c)for(auto& i:r)std::cin>>i; #define ALL(a) (a).begin(),(a).end() #define FOR(i, a, b) for(int i=(a);i<(b);++i) #define RFOR(i, a, b) for(int i=(b)-1;i>=(a);--i) #define REP(i, n) for(int i=0;i=0;--i) #define FORLL(i, a, b) for(ll i=ll(a);i=ll(a);--i) #define REPLL(i, n) for(ll i=0;i=0;--i) #define PAIR std::pair #define PAIRLL std::pair #define IN(a, x, b) (a<=x && x tmp(a);std::cerr << #a << "\t:";for(int i=0; i(a.size()); ++i){std::cerr << tmp.front() << "\n";tmp.pop();}std::cerr << "\n";} template inline T CHMAX(T& a, const T b) { return a = (a < b) ? b : a; } template inline T CHMIN(T& a, const T b) { return a = (a > b) ? b : a; } #define EXCEPTION(msg) throw std::string("Exception : " msg " [ in ") + __func__ + " : " + std::to_string(__LINE__) + " lines ]" #define TRY(cond, msg) try {if (cond) EXCEPTION(msg);}catch (std::string s) {std::cerr << s << std::endl;} void CHECKTIME(std::function f) { auto start = std::chrono::system_clock::now(); f(); auto end = std::chrono::system_clock::now(); auto res = std::chrono::duration_cast((end - start)).count(); std::cerr << "[Time:" << res << "ns (" << res / (1.0e9) << "s)]\n"; } //#define int ll using ll = long long; using ull = unsigned long long; constexpr int INFINT = 1 << 30; // 1.07x10^ 9 constexpr int INFINT_LIM = (1LL << 31) - 1; // 2.15x10^ 9 constexpr ll INFLL = 1LL << 60; // 1.15x10^18 constexpr ll INFLL_LIM = (1LL << 62) - 1 + (1LL << 62); // 9.22x10^18 constexpr double EPS = 1e-7; constexpr int MOD = 1000000007; constexpr double PI = 3.141592653589793238462643383279; // write [ LCA lca(g, root); ] when using this snippet. class LCA { private: const std::vector>& graph; // graph's list expression int root; int n; // the number of nodes int log2n; // = floor(log2(n)) std::vector> parent; // parent[x][v] = a parent(above 2^x) of v (nonexistence -> -1) std::vector depth; // the depth of each node public: LCA(const std::vector>& graph, int root) : graph(graph), root(root), n(graph.size()), log2n(std::floor(std::log2(n) + 1)), parent(log2n, std::vector(n, 0)), depth(n, 0) { init(); } // Check the depth of each node(node "v" -> parent is "p", depth is "d") void dfs(int v, int p, int d) { std::stack stack; stack.push(v); parent[0][v] = p; depth[v] = d; while (!stack.empty()) { int now = stack.top(); stack.pop(); for (int i = 0; i < graph[now].size(); ++i) { int to = graph[now][i]; if (to == parent[0][now]) continue; parent[0][to] = now; depth[to] = depth[now] + 1; stack.push(to); // Check each child of v } } } // Initialize void init() { // Initialize "parent[0]" and "depth" dfs(root, -1, 0); // Initialize "parent" for (int k = 0; k < log2n - 1; ++k) { for (int v = 0; v < n; ++v) { if (parent[k][v] < 0) { // If parent above 2^k of v is nonexistence parent[k + 1][v] = -1; } else { parent[k + 1][v] = parent[k][parent[k][v]]; } } } } // Find LCA of (u, v) int lca(int u, int v) { // go up parent while depth of u and v is same if (depth[u] > depth[v]) std::swap(u, v); for (int k = 0; k < log2n; ++k) { if ((depth[v] - depth[u]) >> k & 1) { v = parent[k][v]; // go up to 2^k if k-th binary is 1 } } if (u == v) return u; // this case is that v is in u's subtree // Find LCA by binary searching for (int k = log2n - 1; k >= 0; --k) { if (parent[k][u] != parent[k][v]) { u = parent[k][u]; v = parent[k][v]; } } return parent[0][u]; } }; struct Node { char pre, now; int p; Node() {} Node(int p, char pre, char now) : p(p), pre(pre), now(now) {} bool operator<(const Node& r) const { if (p == r.p) { if (now == r.now) return pre < r.pre; return now < r.now; } return p < r.p; } }; signed main() { INIT; VAR(int, n); VEC(std::string, s, n); VAR(int, m, x, d); std::vector ii(m), jj(m); REP(k, m) { ii[k] = (x / (n - 1)); jj[k] = (x % (n - 1)); if (ii[k] > jj[k]) std::swap(ii[k], jj[k]); else ++jj[k]; x = (x + d) % (n * (n - 1)); } std::map map; std::map inv; std::vector> g; map[Node(-1, ' ', ' ')] = 0; inv[0] = Node(-1, ' ', ' '); int p = 1; REP(i, n) { REP(j, s[i].size()) { char pre = (j == 0) ? ' ' : s[i][j - 1]; if (map.find(Node(j, pre, s[i][j])) == map.end()) { map[Node(j, pre, s[i][j])] = p; inv[p++] = Node(j, pre, s[i][j]); g.resize(p); int v = map[Node(j, pre, s[i][j])]; char pre2 = (j <= 1) ? ' ' : s[i][j - 2]; Node tmp = (j == 0) ? Node(-1, ' ', ' ') : Node(j - 1, pre2, pre); int u = map[tmp]; g[v].emplace_back(u); g[u].emplace_back(v); } } } g.resize(map.size()); LCA lca(g, 0); int ans = 0; REP(i, m) { auto& s1(s[ii[i]]); char c1 = (s1.size() == 1) ? ' ' : s1[s1.size() - 2]; auto& s2(s[jj[i]]); char c2 = (s2.size() == 1) ? ' ' : s2[s2.size() - 2]; int v = lca.lca(map[Node(s1.size() - 1, c1, *s1.rbegin())], map[Node(s2.size() - 1, c2, *s2.rbegin())]); ans += inv[v].p + 1; } OUT(ans)BR; return 0; }