#pragma GCC optimize ("O3") #pragma GCC target ("avx") #include "bits/stdc++.h" // define macro "/D__MAI" using namespace std; typedef unsigned int uint; typedef long long int ll; typedef unsigned long long int ull; #define debugv(v) printf("L%d %s => ",__LINE__,#v);for(auto e:v){cout< ",__LINE__,#m);for(int x=0;x<(w);x++){cout<<(m)[x]<<" ";}cout<=l;--cnt) #define BIGINT 0x7FFFFFFF #define MD 1000000007ll #define PI 3.1415926535897932384626433832795 template ostream& operator <<(ostream &o, const pair p) { o << "(" << p.first << ":" << p.second << ")"; return o; } #define TIME chrono::system_clock::now() #define MILLISEC(t) (chrono::duration_cast(t).count()) namespace { std::chrono::system_clock::time_point ttt; void tic() { ttt = TIME; } void toc() { fprintf(stderr, "TIME : %lldms\n", MILLISEC(TIME - ttt)); } std::chrono::system_clock::time_point tle = TIME; #ifdef __MAI void safe_tle(int msec) { assert(MILLISEC(TIME - tle) < msec); } #else #define safe_tle(k) ; #endif } #ifdef __MAI //_getchar_nolock #define getchar_unlocked getchar #define putchar_unlocked putchar #endif namespace { class MaiScanner { public: template void input_integer(T& var) { var = 0; T sign = 1; int cc = getchar_unlocked(); for (; cc<'0' || '9'>(int& var) { input_integer(var); return *this; } inline MaiScanner& operator>>(long long& var) { input_integer(var); return *this; } }; } MaiScanner scanner; namespace std { template class hash> { public: size_t operator()(const pair& x) const { return hash()(x.first) ^ hash()(x.second); } }; } // todo : typedef int_c int // capacity // TODO:マーカーの実装? class Flow { public: size_t n; struct Arrow { int from, to; int w_max; // TODO: leftに改名 int cap; Arrow(int from = 0, int to = 0, int w = 1) :from(from), to(to), w_max(w), cap(w) {} }; vector> vertex_to; vector> vertex_from; vector arrow; Flow(int n, int m = 5010) :n(n), vertex_to(n), vertex_from(n) { arrow.reserve(m); } void connect(int from, int to, int w_max) { vertex_to[from].push_back(arrow.size()); // toto vertex_from[to].push_back(arrow.size()); // fromfrom arrow.emplace_back(from, to, w_max); } size_t degree(int v) { return vertex_to[v].size() + vertex_from[v].size(); } size_t degree_in(int v) { return vertex_from[v].size(); } size_t degree_out(int v) { return vertex_to[v].size(); } }; int _fordFulkerson_path_dfs(Flow& flow, vector& result, vector& visit, int u, int i_sink, int mini) { if (i_sink == u) return mini; if (visit[u]) return -1; visit[u] = true; int sumw = 0; bool term = true; for (int e : flow.vertex_to[u]) { Flow::Arrow& a = flow.arrow[e]; if (a.w_max > 0 && !visit[a.to]) { int w; if (mini < 0) w = a.w_max; else w = min(a.w_max, mini); w = _fordFulkerson_path_dfs(flow, result, visit, a.to, i_sink, w); if (w == -1) continue; visit[u] = false; a.w_max -= w; result[a.to] += w; //printf("%d->%d (%d) : w=%d mini=%d \n",a.from,a.to,a.w_max+w,w,mini); sumw += w; mini -= w; term = false; if (mini == 0) return term ? -1 : sumw; } } for (int e : flow.vertex_from[u]) { Flow::Arrow& a = flow.arrow[e]; if (a.cap > a.w_max && !visit[a.from]) { int w; if (mini < 0) w = a.cap - a.w_max; else w = min(a.cap - a.w_max, mini); w = _fordFulkerson_path_dfs(flow, result, visit, a.from, i_sink, w); if (w == -1) continue; visit[u] = false; a.w_max += w; result[a.to] -= w; //printf("%d<-%d (%d) : w=%d mini=%d \n",a.from,a.to,a.w_max-w,w,mini); sumw += w; mini -= w; term = false; if (mini == 0) return term ? -1 : sumw; } } return term ? -1 : sumw; } // flowは書き換えられる. void fordFulkerson(Flow &flow, vector& result, int i_source, int i_sink) { assert(i_source != i_sink); result.resize(flow.n); vector visit(flow.n); int res = 1; while (0 < res) { fill(ALL(visit), false); res = _fordFulkerson_path_dfs(flow, result, visit, i_source, i_sink, -1); result[i_source] += max(0, res); } } // 最大最小流量制限付き class FlowMinMax { public: Flow flow; int ss; // vertex of new source FlowMinMax(int n, int m) :flow(n + 2, m), ss(n) {} FlowMinMax(int n) :flow(n + 2), ss(n) {} void connect(int from, int to, int w_min, int w_max) { // assert(w_min < w_max); /* flow.connect(from, ss+1, w_min); flow.connect(from, to , w_max-w_min); flow.connect(ss , to , w_min); return; */ if (w_max == w_min) { flow.connect(ss, to, w_min); flow.connect(from, ss + 1, w_min); } else if (w_min == 0) { flow.connect(from, to, w_max - w_min); } else { flow.connect(from, ss + 1, w_min); flow.connect(from, to, w_max - w_min); flow.connect(ss, to, w_min); } } private: template // map,int> or unordered_map bool _solve_dinic_edge(MAP_PI& result_edge, int i_source, int i_sink) { vector resflow(flow.n, 0); fordFulkerson(flow, resflow, ss, ss + 1); fordFulkerson(flow, resflow, ss, i_sink); fordFulkerson(flow, resflow, i_source, ss + 1); fordFulkerson(flow, resflow, i_source, i_sink); for (int e : flow.vertex_from[ss + 1]) { const Flow::Arrow& a = flow.arrow[e]; //printf("%d->%d (%d)\n",a.from,a.to,a.w_max);cout.flush(); if (0 < a.w_max) return false; } int floow; for (int u = 0; u v if (a.to >= flow.n - 2) { if (0 < a.w_max) return false; continue; } const Flow::Arrow& c = flow.arrow[ea + 1]; // S -> v if (a.to != c.to) { floow = a.cap - a.w_max; } else { if (0 < c.w_max) return false; floow = c.cap + a.cap - c.w_max - a.w_max; } if (0 < floow) result_edge[(ll)(u) << 32ll | (ll)a.to] += floow; } } return true; } // connect操作を行うので,2回以上呼び出すのは禁止 // sumflow = sink,flowの流量が既知 template bool _solve_dinic_edge_known(MAP_PI& result_edge, int i_source, int i_sink, int sumflow) { vector resflow(flow.n, 0); flow.connect(ss, i_source, sumflow); flow.connect(i_sink, ss + 1, sumflow); fordFulkerson(flow, resflow, ss, ss + 1); for (int e : flow.vertex_from[ss + 1]) { const Flow::Arrow& a = flow.arrow[e]; //printf("%d->%d (%d)\n",a.from,a.to,a.w_max);cout.flush(); if (0 < a.w_max) return false; } int floow; for (int u = 0; u v if (a.to >= flow.n - 2) { if (0 < a.w_max) return false; continue; } const Flow::Arrow& c = flow.arrow[ea + 1]; // S -> v if (a.to != c.to) { floow = a.cap - a.w_max; } else { if (0 < c.w_max) return false; floow = c.cap + a.cap - c.w_max - a.w_max; } if (0 < floow) { result_edge[((ll)u << 32ll) | (ll)a.to] += floow; } } } return true; } public: bool solve_dinic_edge(map& result_edge, int i_source, int i_sink, int sumflow = -1) { return sumflow<0 ? _solve_dinic_edge(result_edge, i_source, i_sink) : _solve_dinic_edge_known(result_edge, i_source, i_sink, sumflow); } bool solve_dinic_edge(unordered_map& result_edge, int i_source, int i_sink, int sumflow = -1) { return sumflow<0 ? _solve_dinic_edge(result_edge, i_source, i_sink) : _solve_dinic_edge_known(result_edge, i_source, i_sink, sumflow); } }; /** // dinic sample int main(){ int i,j,k; int x,y,a,b; Flow graph(6); graph.connect(0,1,1); graph.connect(1,4,1); graph.connect(4,5,1); graph.connect(0,3,1); graph.connect(3,4,1); graph.connect(1,2,1); graph.connect(2,5,1); vector result(6,0); dinic(graph,result,0,5); debugv(result); // FlowMinMax graph2(3); // // graph2.connect(0,1,1,2); // graph2.connect(1,2,3,4); // // vector result2(3,0); // cout << (graph2.solve_dinic(result2,0,2) ? "true" : "false") << endl; // // debugv(result2); return 0; } /**/ /**/ int width, height; int m, n; int field[10010]; int commands[30010]; int main() { int i, j, k; int x, y, a, b; cin >> height >> width >> n; cin.ignore(); int nblocks = 0; // X座標にブロックがいくつ積まれているか、を記録する。 // stringを保持する必要はない。 for (y = 0; y < height; y++) { string s; cin >> s; for (x = 0; x < width; x++) { field[x] += s[x] == '#'; } } for (x = 0; x < width; x++) { nblocks += field[x]; } for (i = 0; i < n; i++) { scanf("%d", commands + i); } // A _ B _ C // | | ----> | | ----> [sink] // [source] -> | | | | // | | | | // |_pack |_field // // A : [1,9] (packは[1,9]個のブロックを持つ) // B : [0,3] (packは3x3の容量を持つ) // C : [#,#] (x列には#個のブロックが積み上がっている) FlowMinMax flow(1 + n + width + 1); const int i_source = 0; const int i_sink = 1; for (i = 0; i < n; i++) { // A edge flow.connect(i_source, 2 + i, 1, 9); int left = commands[i]; for (j = 0; j < 3; j++) { // B edge flow.connect(2 + i, 2 + n + left + j, 0, 3); } } for (x = 0; x < width; x++) { // C edge flow.connect(2 + n + x, i_sink, field[x], field[x]); } //for (Flow::Arrow& ar : flow.flow.arrow){ // if (ar.w_max == 0) continue; // printf("%d -> %d\n",ar.from,ar.to); //} unordered_map nagare; tic(); if (!flow.solve_dinic_edge(nagare, i_source, i_sink, nblocks)) { abort(); cout << "warn" << endl; } toc(); //debugv(nagare); int hako[3]; for (i = 0; i < n; ++i) { for (j = 0; j < 3; ++j) { hako[j] = nagare[((ll)(2 + i) << 32ll) | (ll)(2 + n + commands[i] + j)]; } for (y = 3; 0 < y; --y) { for (x = 0; x < 3; ++x) { if (y <= hako[x]) { putchar_unlocked('#'); } else { putchar_unlocked('.'); } } putchar_unlocked('\n'); } } return 0; } /* 2 4 3 ..#. ..## 0 1 0 */