import std.stdio, std.array, std.string, std.conv, std.algorithm; import std.typecons, std.range, std.random, std.math, std.container; import std.numeric, std.bigint, core.bitop, core.stdc.stdio; void main() { immutable int INF = 2 * 10^^9; auto N = readln.chomp.to!int; auto A = readln.split.map!(to!int); if (N == 1) { writeln(A[0]); return; } /* dp[l][r][left or right]: 未訪問の区間がl~rで、最後に訪問済のノードが l-1 or r+1 のときの最小コスト */ auto dp = new int[][][](N, N, 2); foreach (i; 0..N) foreach (j; 0..N) fill(dp[i][j], INF); dp[1][N-1][0] = A[0]; dp[0][N-2][1] = A[N-1]; foreach (len; iota(N-1, 1, -1)) { foreach (i; 0..N-len+1) { int j = i + len - 1; int ltol = max(dp[i][j][0] + 1, A[i]); int rtol = max(dp[i][j][1] + j - i, A[i]); int ltor = max(dp[i][j][0] + j - i, A[j]); int rtor = max(dp[i][j][1] + 1, A[j]); dp[i+1][j][0] = min(dp[i+1][j][0], min(ltol, rtol)); dp[i][j-1][1] = min(dp[i][j-1][1], min(ltor, rtor)); } } int ans = INF; foreach (i; 0..N) { ans = min(ans, max(dp[i][i][0]+1, A[i])); ans = min(ans, max(dp[i][i][1]+1, A[i])); } ans.writeln; }