import std.algorithm, std.conv, std.range, std.stdio, std.string; const p = 10 ^^ 9 + 7; alias FactorRing!p mint; const dpi = [2,3,5,7,11,13]; const dci = [4,6,8,9,10,12]; void main() { auto rd = readln.split, n = rd[0].to!long, p = rd[1].to!int, c = rd[2].to!int; auto m = (dpi.maxElement * p + dci.maxElement * c).to!long; auto cpi = calcCombi(dpi, p); auto cci = calcCombi(dci, c); auto ci = new mint[](m+1); if (p == 0) { ci = cci; } else if (c == 0) { ci = cpi; } else { foreach (i, cp; cpi) foreach (j, cc; cci) ci[i+j] += cp * cc; } if (n <= m) { auto ai = new mint[](n+m); ai[0] = 1; foreach (i; 1..n+m) foreach (j; 1..m+1) if (i-j >= 0 && i-j < n) ai[i] += ai[i-j] * ci[j]; writeln(ai[n..$].sum); } else { auto ai = new mint[](m+1); ai[0] = 1; foreach (i; 1..m+1) foreach (j; 1..m+1) if (i-j >= 0) ai[i] += ai[i-j] * ci[j]; auto mc = new mint[][](m, m); mc[0][] = ci[1..$][]; foreach (i; 0..m-1) mc[i+1][i] = mint(1); auto mi = new mint[][](m, m); foreach (i; 0..m) mi[i][i] = mint(1); auto mq = repeatedSquare!(mint[][], matMul)(mc, n-m, mi); auto bi = ai.dup; bi.reverse(); ai = matMulVec(mq, bi[0..$-1]); ai.reverse(); auto ri = new mint[](m*2); ri[1..m+1][] = ai[]; foreach (i; 1..m) foreach (j; 1..m+1) if (m+i-j > 0 && m+i-j < m) ri[m+i] += ri[m+i-j] * ci[j]; writeln(ri[m..$].sum); } } mint[] calcCombi(const int[] di, int c) { auto n = di.length.to!int; if (c == 0) return []; auto ri = new int[][][](c); ri[0] = n.iota.map!(i => [i.to!int]).array; foreach (i; 1..c) ri[i] = ri[i-1].map!(r => iota(r.back, n).map!(d => r ~ d)).joiner.array; auto ci = new mint[](di.maxElement * c + 1); foreach (r; ri[$-1]) ci[di.indexed(r).sum] += 1; return ci; } T repeatedSquare(T, alias pred = "a * b", U)(T a, U n, T init) { import std.functional; alias predFun = binaryFun!pred; if (n == 0) return init; auto r = init; while (n > 0) { if ((n & 1) == 1) r = predFun(r, a); a = predFun(a, a); n >>= 1; } return r; } T[][] matMul(T)(T[][] a, T[][] b) { auto l = b.length, m = a.length, n = b[0].length; auto c = new T[][](m, n); foreach (i; 0..m) foreach (j; 0..n) foreach (k; 0..l) c[i][j] += a[i][k] * b[k][j]; return c; } T[] matMulVec(T)(T[][] a, T[] b) { auto l = b.length, m = a.length; auto c = new T[](m); foreach (i; 0..m) foreach (j; 0..l) c[i] += a[i][j] * b[j]; return c; } struct FactorRing(int m) { long v; @property int toInt() { return v.to!int; } alias toInt this; this(T)(T _v) { v = mod(_v); } ref FactorRing!m opAssign(int _v) { v = mod(_v); return this; } pure auto mod(long _v) const { return _v > 0 ? _v % m : ((_v % m) + m) % m; } pure auto opBinary(string op: "+")(int rhs) const { return FactorRing!m(v + rhs); } pure auto opBinary(string op: "-")(int rhs) const { return FactorRing!m(v - rhs); } pure auto opBinary(string op: "*")(int rhs) const { return FactorRing!m(v * rhs); } pure auto opBinary(string op)(FactorRing!m rhs) const if (op == "+" || op == "-" || op == "*") { return opBinary!op(rhs.v); } auto opOpAssign(string op: "+")(int rhs) { v = mod(v + rhs); } auto opOpAssign(string op: "-")(int rhs) { v = mod(v - rhs); } auto opOpAssign(string op: "*")(int rhs) { v = mod(v * rhs); } auto opOpAssign(string op)(FactorRing!m rhs) if (op == "+" || op == "-" || op == "*") { return opOpAssign!op(rhs.v); } }