// // assert付きwriter解 // #pragma GCC optimize ("O3") #pragma GCC target ("avx") #include "bits/stdc++.h" // define macro "/D__MAI" using namespace std; typedef long long int ll; #define debugv(v) printf("L%d %s => ",__LINE__,#v);for(auto e:v){cout< ",__LINE__,#m);for(int x=0;x<(w);x++){cout<<(m)[x]<<" ";}cout< ostream& operator <<(ostream &o, const pair p) { o << "(" << p.first << ":" << p.second << ")"; return o; } #define TIME chrono::system_clock::now() #define MILLISEC(t) (chrono::duration_cast(t).count()) namespace { std::chrono::system_clock::time_point ttt; void tic() { ttt = TIME; } void toc() { fprintf(stderr, "TIME : %lldms\n", MILLISEC(TIME - ttt)); } std::chrono::system_clock::time_point tle = TIME; #ifdef __MAI void safe_tle(int msec) { assert(MILLISEC(TIME - tle) < msec); } #else #define safe_tle(k) ; #endif } #ifdef __MAI #define getchar_unlocked getchar #define putchar_unlocked putchar #endif #ifdef __VSCC #define getchar_unlocked _getchar_nolock #define putchar_unlocked _putchar_nolock #endif namespace { #define isvisiablechar(c) (0x21<=(c)&&(c)<=0x7E) class MaiScanner { public: template void input_integer(T& var) { var = 0; T sign = 1; int cc = getchar_unlocked(); for (; cc<'0' || '9'>(int& var) { input_integer(var); return *this; } inline MaiScanner& operator>>(long long& var) { input_integer(var); return *this; } inline MaiScanner& operator>>(string& var) { int cc = getchar_unlocked(); for (; !isvisiablechar(cc); cc = getchar_unlocked()); for (; isvisiablechar(cc); cc = getchar_unlocked()) var.push_back(cc); } }; } MaiScanner scanner; class Flow { public: size_t n; struct Arrow { int from, to; int w_max; int cap; Arrow(int from = 0, int to = 0, int w = 1) :from(from), to(to), w_max(w), cap(w) {} bool operator<(const Arrow& a) const { return (from> vertex_to; vector> vertex_from; vector arrow; Flow(int n, int m = 5010) :n(n), vertex_to(n), vertex_from(n) { arrow.reserve(m); } void connect(int from, int to, int left) { vertex_to[from].push_back(arrow.size()); // toto vertex_from[to].push_back(arrow.size()); // fromfrom arrow.emplace_back(from, to, left); } size_t degree(int v) { return vertex_to[v].size() + vertex_from[v].size(); } size_t degree_in(int v) { return vertex_from[v].size(); } size_t degree_out(int v) { return vertex_to[v].size(); } }; int _dinic_path_dfs(Flow& flow, vector& result, vector& flag, const vector& dist, int u, int i_sink, int mini) { // TODO: 経路再利用 if (i_sink == u) return mini; if (flag[u]) return -1; flag[u] = true; int sumw = 0; bool term = true; for (int e : flow.vertex_to[u]) { Flow::Arrow& a = flow.arrow[e]; if (a.w_max > 0 && dist[u]>dist[a.to]) { int w; if (mini < 0) w = a.w_max; else w = min(a.w_max, mini); w = _dinic_path_dfs(flow, result, flag, dist, a.to, i_sink, w); if (w == -1) continue; a.w_max -= w; result[a.to] += w; sumw += w; mini -= w; term = false; flag[u] = false; // TODO: 末尾では? if (mini == 0) return term ? -1 : sumw; } } for (int e : flow.vertex_from[u]) { Flow::Arrow& a = flow.arrow[e]; if (a.cap>a.w_max && dist[u]>dist[a.from]) { int w; if (mini < 0) w = a.cap - a.w_max; else w = min(a.cap - a.w_max, mini); w = _dinic_path_dfs(flow, result, flag, dist, a.from, i_sink, w); if (w == -1) continue; a.w_max += w; result[a.to] -= w; sumw += w; mini -= w; term = false; flag[u] = false; if (mini == 0) return term ? -1 : sumw; } } return term ? -1 : sumw; } // flowは書き換えられる. void dinic(Flow &flow, vector& result, int i_source, int i_sink) { assert(i_source != i_sink); result.resize(flow.n); int distbegin = 0; vector dist(flow.n); queue q; vector flag(flow.n); for (int distbegin = 0; ; distbegin += flow.n) { q.emplace(i_sink); // bfsはsinkからsourceへの距離を計算. dist[i_sink] = distbegin + 1; while (!q.empty()) { int v = q.front(); q.pop(); for (int ie : flow.vertex_from[v]) { const Flow::Arrow& e = flow.arrow[ie]; if (0b && c>b)); } class GraphE { public: size_t n; struct Edge { int u, v; Edge(int from = 0, int to = 0) :u(from), v(to) {} int to(int _v) { return _v == v ? u : v; } }; vector> vertex_to; vector edge; GraphE(int n, int m = 5010) :n(n), vertex_to(n) { edge.reserve(m); } void connect(int from, int to) { vertex_to[from].push_back(edge.size()); // toto vertex_to[to].push_back(edge.size()); // fromfrom edge.emplace_back(from, to); } size_t degree(int v) { return vertex_to[v].size(); } void resize(size_t _n) { n = _n; vertex_to.resize(_n); } }; void checkinput(GraphE& g, vector& vertices){ set parts; repeat(g.n) { const vector& edges = g.vertex_to[cnt]; int size = edges.size(); for (int i = 0; i < (size - 1); ++i) { auto e1 = g.edge[edges[i]]; for (int j = i + 1; j < size; ++j) { auto e2 = g.edge[edges[j]]; bool b = false; if (e1.u == e2.u) { b|= (kadomatu(vertices[e1.v], vertices[e1.u], vertices[e2.v])); } else if (e1.u == e2.v) { b|= (kadomatu(vertices[e1.v], vertices[e1.u], vertices[e2.u])); } else if (e1.v == e2.u) { b|= (kadomatu(vertices[e1.u], vertices[e1.v], vertices[e2.v])); } else if (e1.v == e2.v) { b|= (kadomatu(vertices[e1.u], vertices[e1.v], vertices[e2.u])); } assert(b); parts.insert(e1.u); parts.insert(e1.v); parts.insert(e2.u); parts.insert(e2.v); } } } assert(parts.size() == g.n); set> s; for (auto e : g.edge){ s.insert(make_pair(e.u, e.v)); } assert(s.size() == g.edge.size()); } // ---------------------------------------------- // 本題ここから // ---------------------------------------------- const int inf = 5e15; int main() { int n, m; scanner >> n >> m; vector cost(n); Flow graph(n + 2); const int source = n; const int sink = n + 1; vector classify(n); GraphE checker(n); repeat(n) { scanner >> cost[cnt]; } repeat(m) { int u, v; scanner >> u >> v; assert(u < v); --u; --v; if (cost[u] > cost[v]) swap(u, v); // 未だ source->u の辺を張っていないならば if (!classify[u]) { classify[u] = 1; graph.connect(source, u, cost[u]); } // 未だ v->sink の辺を張っていないならば if (!classify[v]) { classify[v] = 2; graph.connect(v, sink, cost[v]); } graph.connect(u, v, inf); checker.connect(u, v); } checkinput(checker, cost); // sourceからsinkにフローを流す. // result[i]は,頂点iに流れた流量が格納される. vector result; dinic(graph, result, source, sink); cout << result[sink] << endl; return 0; }