#include #define FOR(i, a, b) for (ll i = (a); i < (b); i++) #define RFOR(i, a, b) for (ll i = (b)-1; i >= (a); i--) #define rep(i, n) for (ll i = 0; i < (n); i++) #define rep1(i, n) for (ll i = 1; i <= (n); i++) #define rrep(i, n) for (ll i = (n)-1; i >= 0; i--) #define pb push_back #define mp make_pair #define fst first #define snd second #define show(x) cout << #x << " = " << x << endl #define chmin(x, y) x = min(x, y) #define chmax(x, y) x = max(x, y) #define pii pair #define vi vector using namespace std; template ostream& operator<<(ostream& o, const pair& p) { return o << "(" << p.first << "," << p.second << ")"; } template ostream& operator<<(ostream& o, const vector& vc) { o << "sz = " << vc.size() << endl << "["; for (const T& v : vc) o << v << ","; o << "]"; return o; } using ll = long long; constexpr ll MOD = 1000000007; template struct Edge { Edge(const std::size_t from_, const std::size_t to_, const T cost_) : from{from_}, to{to_}, cost{cost_} {} Edge& operator=(const Edge&) = default; std::size_t from; std::size_t to; T cost; bool operator<(const Edge& e) const //inverse { return cost != e.cost ? cost > e.cost : to < e.to; } }; template class Graph { public: Graph(const std::size_t v) : m_v{v}, m_e{0} { m_table.resize(v); m_reversed_table.resize(v); } void addEdge(const std::size_t from, const std::size_t to, const T cost) { m_e++; m_table[from].push_back(Edge{from, to, cost}); m_reversed_table[to].push_back(Edge{to, from, cost}); } void TopologocalSort(std::vector& srt) const { srt.clear(); std::vector used(m_v, false); for (std::size_t i = 0; i < m_v; i++) { dfs_topo(i, used, srt); } std::reverse(srt.begin(), srt.end()); } std::size_t SCC(std::vector& cmp) const { assert(cmp.size() == m_v); for (std::size_t i = 0; i < m_v; i++) { cmp[i] = 0; } std::vector st; std::vector used(m_v, false); for (std::size_t i = 0; i < m_v; i++) { if (not used[i]) { dfs1_scc(i, st, used); } } for (std::size_t i = 0; i < m_v; i++) { used[i] = false; } std::size_t comp = 0; for (std::size_t i = 0; i < st.size(); i++) { const std::size_t s = st[st.size() - i - 1]; if (not used[s]) { dfs2_scc(s, comp++, cmp, used); } } return comp; } bool BellmanFord(const std::size_t s, std::vector& d) const { assert(s < m_v); assert(d.size() == m_v); for (std::size_t i = 0; i < m_v; i++) { d[i] = INF; } d[s] = 0; bool no_negative_loop = true; for (std::size_t i = 0; i < m_v; i++) { for (std::size_t v = 0; v < m_v; v++) { if (d[v] != INF) { for (const auto& e : m_table[v]) { if (d[e.to] > d[e.from] + e.cost) { d[e.to] = d[v] + e.cost; if (i == m_v - 1) { d[e.to] = -INF; // Confirm " -INF < min(possible_cost) * V " no_negative_loop = false; } } } } } } return no_negative_loop; } void Dijkstra(const std::size_t s, std::vector& d) const { assert(s < m_v); assert(d.size() == m_v); using P = std::pair; std::priority_queue, std::greater

> q; for (std::size_t i = 0; i < m_v; i++) { d[i] = INF; } d[s] = 0; q.push(std::make_pair(0, s)); while (not q.empty()) { const P& p = q.top(); const T cost = p.first; const std::size_t v = p.second; q.pop(); if (d[v] < cost) { continue; } for (const auto& e : m_table[v]) { if (d[e.to] > d[v] + e.cost) { d[e.to] = d[v] + e.cost; q.push(std::make_pair(d[e.to], e.to)); } } } } void WarshallFloyd(std::vector>& d) const { assert(d.size() == m_v); for (std::size_t i = 0; i < m_v; i++) { assert(d[i].size() == m_v); for (std::size_t j = 0; j < m_v; j++) { if (i == j) { d[i][j] = 0; } else { d[i][j] = INF; } } for (const auto& e : m_table[i]) { d[i][e.to] = std::min(e.cost, d[i][e.to]); // For doubled-link } } for (std::size_t k = 0; k < m_v; k++) { for (std::size_t i = 0; i < m_v; i++) { for (std::size_t j = 0; j < m_v; j++) { if (d[i][j] > d[i][k] + d[k][j] and d[i][k] < INF and d[k][j] < INF) { d[i][j] = d[i][k] + d[k][j]; } } } } } void restorePath(const std::size_t s, const std::size_t t, const std::vector& d, std::vector& path) const { assert(s < m_v); assert(t < m_v); assert(d.size() == m_v); path.clear(); std::size_t pos = t; path.push_back(t); while (pos != s) { for (const auto& e : m_reversed_table[pos]) { if (d[e.to] + e.cost == d[pos]) { pos = e.to; break; } } path.push_back(pos); } std::reverse(path.begin(), path.end()); } std::size_t getV() const { return m_v; } std::size_t getE() const { return m_e; } const std::vector>>& getEdge() const { return m_table; } std::vector>>& getEdge() { return m_table; } const std::vector>& getReversedEdge() const { return m_reversed_table; } std::vector>& getReversedEdge() { return m_reversed_table; } static constexpr T INF = std::numeric_limits::max() / 100; private: void dfs_topo(const std::size_t s, std::vector& used, std::vector& srt) const { assert(s < m_v); assert(used.size() == m_v); if (not used[s]) { used[s] = true; for (const auto& e : m_table[s]) { dfs_topo(e.to, used, srt); } srt.push_back(s); } } void dfs1_scc(const std::size_t s, std::vector& st, std::vector& used) const { assert(s < m_v); assert(used.size() == m_v); used[s] = true; for (const auto& e : m_table[s]) { if (not used[e.to]) { dfs1_scc(e.to, st, used); } } st.push_back(s); } void dfs2_scc(const std::size_t s, const std::size_t index, std::vector& cmp, std::vector& used) const { assert(s < m_v); assert(index < m_v); assert(cmp.size() == m_v); cmp[s] = index; used[s] = true; for (const auto& e : m_reversed_table[s]) { if (not used[e.to]) { dfs2_scc(e.to, index, cmp, used); } } }; const std::size_t m_v; std::size_t m_e; std::vector>> m_table; std::vector>> m_reversed_table; }; int main() { std::size_t N; std::size_t M; cin >> N >> M; Graph g(N); Graph revg(N); rep(i, M) { std::size_t p, q, r; cin >> p >> q >> r; p--, r--; g.addEdge(p, r, q); revg.addEdge(r, p, q); } vector isleaf(N, false); vector dp(N, 0); rep(i, N) { if (revg.getEdge()[i].empty()) { isleaf[i] = true; } } vector srt(N); g.TopologocalSort(srt); //show(srt); dp[N - 1] = 1; for (int i = N - 1; i >= 0; i--) { for (const auto& e : revg.getEdge()[srt[i]]) { dp[e.to] += dp[srt[i]] * e.cost; } } for (int i = 0; i < N - 1; i++) { if (isleaf[i]) { cout << dp[i] << endl; } else { cout << 0 << endl; } } return 0; }