import std.algorithm, std.conv, std.range, std.stdio, std.string; import std.container; // SList, DList, BinaryHeap alias Point!int point; alias Grid!(int, int) grid; void main() { auto rd1 = readln.split.to!(size_t[]), h = rd1[0], w = rd1[1]; auto a = h.iota.map!(_ => readln.split.to!(int[])).array; auto g = grid(a); auto q = readln.chomp.to!size_t, sameColor = false, lastColor = 0; foreach (_; 0..q) { auto rd2 = readln.split.to!(int[]), p = point(rd2[1]-1, rd2[0]-1), x = rd2[2]; if (sameColor) { lastColor = x; continue; } if (g[p] == x) continue; auto qu = new DList!point([p]); while (!qu.empty) { auto qp = qu.front; qu.removeFront(); g[qp] = x; foreach (np; g.sibPoints4(qp)) if (g[np] != x) qu.insertBack(np); } if (g.points.all!(sp => g[sp] == x)) { sameColor = true; lastColor = x; } } if (sameColor) { foreach (i; 0..h) writeln(lastColor.repeat.take(w).array.to!(string[]).join(" ")); } else { foreach (i; 0..h) writeln(g[i].to!(string[]).join(" ")); } } struct Point(T) { T x, y; pure auto opBinary(string op: "+")(Point!T rhs) const { return Point!T(x + rhs.x, y + rhs.y); } pure auto opBinary(string op: "-")(Point!T rhs) const { return Point!T(x - rhs.x, y - rhs.y); } pure auto opBinary(string op: "*")(Point!T rhs) const { return x * rhs.x + y * rhs.y; } pure auto opBinary(string op: "*")(T a) const { return Point!T(x * a, y * a); } pure auto opBinary(string op: "/")(T a) const { return Point!T(x / a, y / a); } pure auto hypot2() const { return x ^^ 2 + y ^^ 2; } } struct Grid(T, U) { import std.algorithm, std.conv, std.range, std.traits, std.typecons; const sibs4 = [Point!U(-1, 0), Point!U(0, -1), Point!U(1, 0), Point!U(0, 1)]; const sibs8 = [Point!U(-1, 0), Point!U(-1, -1), Point!U(0, -1), Point!U(1, -1), Point!U(1, 0), Point!U(1, 1), Point!U(0, 1), Point!U(-1, 1)]; T[][] m; const size_t rows, cols; mixin Proxy!m; this(size_t r, size_t c) { rows = r; cols = c; m = new T[][](rows, cols); } this(T[][] s) { rows = s.length; cols = s[0].length; m = s; } pure auto dup() const { return Grid(m.map!(r => r.dup).array); } ref pure auto opIndex(Point!U p) { return m[p.y][p.x]; } ref pure auto opIndex(size_t y) { return m[y]; } ref pure auto opIndex(size_t y, size_t x) const { return m[y][x]; } static if (isAssignable!T) { auto opIndexAssign(T v, Point!U p) { return m[p.y][p.x] = v; } auto opIndexAssign(T v, size_t y, size_t x) { return m[y][x] = v; } auto opIndexOpAssign(string op, V)(V v, Point!U p) { return mixin("m[p.y][p.x] " ~ op ~ "= v"); } auto opIndexOpAssign(string op, V)(V v, size_t y, size_t x) { return mixin("m[y][x] " ~ op ~ "= v"); } } pure auto validPoint(Point!U p) { return p.x >= 0 && p.x < cols && p.y >= 0 && p.y < rows; } pure auto points() const { return rows.to!U.iota.map!(y => cols.to!U.iota.map!(x => Point!U(x, y))).joiner; } pure auto sibPoints4(Point!U p) { return sibs4.map!(s => p + s).filter!(p => validPoint(p)); } pure auto sibPoints8(Point!U p) { return sibs8.map!(s => p + s).filter!(p => validPoint(p)); } }