#include "bits/stdc++.h" using namespace std; #define FOR(i,j,k) for(int (i)=(j);(i)<(int)(k);++(i)) #define rep(i,j) FOR(i,0,j) #define each(x,y) for(auto &(x):(y)) #define mp make_pair #define MT make_tuple #define all(x) (x).begin(),(x).end() #define debug(x) cout<<#x<<": "<<(x)<; using vi = vector; using vll = vector; template class ModInt { public: ModInt() :value(0) {} ModInt(long long val) :value((int)(val<0 ? MOD + val%MOD : val%MOD)) { } ModInt& operator+=(ModInt that) { value = value + that.value; if (value >= MOD)value -= MOD; return *this; } ModInt& operator-=(ModInt that) { value -= that.value; if (value<0)value += MOD; return *this; } ModInt& operator*=(ModInt that) { value = (int)((long long)value * that.value % MOD); return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt pow(long long k) const { if (value == 0)return 0; ModInt n = *this, res = 1; while (k) { if (k & 1)res *= n; n *= n; k >>= 1; } return res; } ModInt inverse() const { long long a = value, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } return ModInt(u); } int toi() const { return value; } private: int value; }; typedef ModInt<1000000007> mint; ostream& operator<<(ostream& os, const mint& x) { os << x.toi(); return os; } template class Matrix { public: int n, m; Matrix() { } Matrix(int n_, int m_) :n(n_), m(m_), A(n, vector(m)) { } #define ITER(a,b) for(int i=0;i 0) { if (k & 1) C *= D; D *= D; k >>= 1; } return C; } Val& operator()(int i, int j) { return A[i][j]; } vector& operator[](int i) { return A[i]; } vector mulVec(const vector & u) { assert((int)u.size() == m); Matrix v(m, 1); for (int i = 0; i < m; ++i)v[i][0] = u[i]; v = (*this)*v; vector w(n); for (int i = 0; i < n; ++i)w[i] = v[i][0]; return w; } private: vector> A; }; typedef Matrix mat; /* 多分行列の累乗みたいな 10 x 10 (0,0,0,0,0,0,0,0,0,1) 条件が複雑なので有効グラフ書く */ // 完,(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),{(1,2),(3,4)},{(1,4),(2,3)},1 int a[10][10] = { {1,1,1,1,1,1,1,0,1,0},//完 {0,1,1,1,0,0,0,0,1,1},//(1,2) {0,1,1,1,1,1,0,0,0,1},//(1,3) {0,1,1,1,1,1,1,1,0,1},//(1,4) {0,0,1,1,1,1,0,0,0,1},//(2,3) {0,0,1,1,1,1,1,0,0,1},//(2,4) {0,0,0,1,0,1,1,0,1,1},//(3,4) {0,1,0,0,0,0,1,1,0,1},//(1,2),(3,4) {0,0,0,1,0,0,0,0,1,0},//(1,4),(2,3) {0,0,0,0,0,0,0,0,0,1},//1 }; int main(){ ios::sync_with_stdio(false); cin.tie(0); ll N; cin >> N; mat A(10, 10); rep(i, 10)rep(j, 10)A[i][j] = a[i][j]; vector v(10); v.back() = 1; A ^= (N + 1); v=A.mulVec(v); cout << v[0] << endl; }