#include #define _overload(_1,_2,_3,name,...) name #define _rep(i,n) _range(i,0,n) #define _range(i,a,b) for(int i=int(a);i=int(b);--i) #define rrep(...) _overload(__VA_ARGS__,_rrange,_rrep,)(__VA_ARGS__) #define _all(arg) begin(arg),end(arg) #define uniq(arg) sort(_all(arg)),(arg).erase(unique(_all(arg)),end(arg)) #define getidx(ary,key) lower_bound(_all(ary),key)-begin(ary) #define clr(a,b) memset((a),(b),sizeof(a)) #define bit(n) (1LL<<(n)) #define popcount(n) (__builtin_popcountll(n)) using namespace std; templatebool chmax(T &a, const T &b) { return (a < b) ? (a = b, 1) : 0;} templatebool chmin(T &a, const T &b) { return (b < a) ? (a = b, 1) : 0;} using ll = long long; using R = long double; const R EPS = 1e-9L; // [-1000,1000]->EPS=1e-8 [-10000,10000]->EPS=1e-7 inline int sgn(const R& r) {return (r > EPS) - (r < -EPS);} inline R sq(R x) {return sqrt(max(x, 0.0L));} const int dx[8] = {1, 0, -1, 0, 1, -1, -1, 1}; const int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1}; // Problem Specific Parameter: #define error(args...) { vector _debug = split(#args, ',');err(begin(_debug), args);} vector split(const string& s, char c) { vector v; stringstream ss(s); string x; while (getline(ss, x, c)) v.emplace_back(x); return move(v); } void err(vector::iterator it) {cerr << endl;} template void err(vector::iterator it, T a, Args... args) { cerr << it -> substr((*it)[0] == ' ', it -> length()) << " = " << a << " ", err(++it, args...); } using edge = struct {int to;}; using G = vector>; void add_edge(G &graph, int from, int to) { graph[from].push_back({to}); } // x&1 == 1 True // x&1 == 0 False void closure_or(G &graph, int a, int b) { add_edge(graph, a ^ 1, b); add_edge(graph, b ^ 1, a); } auto strongly_connected_components(const G& graph) { const int n = graph.size(); vector used(n, 0), order, scc(n, 0); auto dfs = [&](int v) { auto func = [&](int v, auto func)->void{ used[v] = true; for (auto &e : graph[v]) if (!used[e.to]) func(e.to, func); order.push_back(v); }; return func(v, func); }; rep(v, n) if (used[v] == false) dfs(v); G rgraph(n); rep(v, n) for (auto &e : graph[v]) add_edge(rgraph, e.to, v); int total = 0; auto rdfs = [&](int v) { auto func = [&](int v, auto func)->void{ used[v] = true, scc[v] = total; for (auto &e : rgraph[v]) if (!used[e.to]) func(e.to, func); }; return func(v, func); }; used.assign(2 * n, false); reverse(begin(order), end(order)); for (auto &v : order) if (used[v] == false) rdfs(v),total++; return scc; } vector get_variable(G &graph) { const int n = graph.size() / 2; vector ret(n, 0); vector scc; scc = strongly_connected_components(graph); rep(i, n) { if (scc[2 * i] == scc[2 * i + 1]) ret[0] = -1; else ret[i] = (scc[2 * i] < scc[2 * i + 1]); } return ret; } string s[1010]; int main(void) { int n; cin >> n; const int limit = 52; if (n > limit * limit) { puts("Impossible"); return 0; } rep(i, n) cin >> s[i]; G graph(2 * n); // F a | bc // T ab | c rep(i, n)rep(j, i) { // F F if (s[i].substr(0, 1) == s[j].substr(0, 1) or s[i].substr(1, 2) == s[j].substr(1, 2)) { //error(i, "F", j, "F"); closure_or(graph, 2 * i + 1, 2 * j + 1); } // T F if (s[i].substr(2, 1) == s[j].substr(0, 1) or s[i].substr(0, 2) == s[j].substr(1, 2)) { //error(i, "T", j, "F"); closure_or(graph, 2 * i, 2 * j + 1); } // F T if (s[i].substr(0, 1) == s[j].substr(2, 1) or s[i].substr(1, 2) == s[j].substr(0, 2)) { //error(i, "F", j, "T"); closure_or(graph, 2 * i + 1, 2 * j); } // T T if (s[i].substr(2, 1) == s[j].substr(2, 1) or s[i].substr(0, 2) == s[j].substr(0, 2)) { //error(i, "T", j, "T"); closure_or(graph, 2 * i, 2 * j); } } vector ret = get_variable(graph); //cerr << ret.size() << endl; if (ret[0] == -1) { puts("Impossible"); return 0; } rep(i, n) { //error(ret[i]); if (ret[i]) cout << s[i][0] << s[i][1] << " " << s[i][2] << endl; else cout << s[i][0] << " " << s[i][1] << s[i][2] << endl; } return 0; }