import Control.Monad import Data.Map ((!)) import qualified Data.Map as M import qualified Data.Set as S import qualified Data.ByteString.Char8 as B import Data.Maybe type Vertex = Int type Weight = Int type Edge = ((Vertex, Vertex), (Weight, Path)) type Path = [Vertex] type Memo = M.Map (Vertex, Vertex) (Weight, Path) buildG :: [Edge] -> Memo buildG = M.fromList readUndirectedEdge :: B.ByteString -> [Edge] readUndirectedEdge = concatMap ((\[s,t,w] -> [((s,t),(w,[s,t])),((t,s),(w,[t,s]))]) . map readVertex . B.words) . B.lines readVertex :: B.ByteString -> Vertex readVertex = fst . fromJust . B.readInt main :: IO () main = do n <- readLn ss <- replicateM n readLn _ <- getLine es <- readUndirectedEdge <$> B.getContents let g = buildG es print (stay2 n ss g) stay2 :: Int -> [Int] -> Memo -> Int stay2 n ss = minimum . pay n ss . warshallFloyd n pay :: Int -> [Int] -> Memo -> [Int] pay n ss m = do s1 <- [1..n-2] s2 <- [1..n-2] guard (s1 /= s2) return (cost m 0 s1 + cost m s1 s2 + cost m s2 (n-1) + ss!!s1 + ss!!s2) cost m s t = fst (m!(s,t)) warshallFloyd :: Int -> Memo -> Memo warshallFloyd n m = foldl short m [(k,i,j) | k<-[0..n-1], i<-[0..n-1], j<-[0..n-1]] short m (k,i,j) = M.insertWith lexmin (i,j) (connect m k i j) m connect m k i j = maybe (100000,[]) id $ do (w1,p1) <- M.lookup (i,k) m (w2,p2) <- M.lookup (k,j) m return (w1 + w2, init p1 ++ tail p2) lexmin (w1,p1) (w2,p2) | w1 < w2 = (w1, p1) | w1 == w2 = (w1, min p1 p2) | otherwise = (w2,p2)