import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; public class Main { public static void main(String[] args) { new Main().run(); } static long time = 0; public void run() { Scanner sc = new Scanner(System.in); int P = sc.nextInt(); int R = sc.nextInt(); int N = sc.nextInt(); long[] A = new long[N]; long[] B = new long[N]; long[] C = new long[N]; PrintWriter pw = new PrintWriter(System.out); long inv2 = inv(2, P); for (int i = 0; i < N; ++i) { A[i] = sc.nextInt(); B[i] = sc.nextInt(); C[i] = sc.nextInt(); long invA = inv(A[i], P); B[i] = invA * B[i] % P; C[i] = invA * C[i] % P; A[i] = 1; long v = B[i] * B[i] - 4 * C[i]; v %= P; while (v < 0) v += P; if (v == 0 || pow(v, (P - 1) / 2, P) == 1) { v = calc(v, P); long[] ans = { inv2 * (-B[i] + v), inv2 * (-B[i] + P - v) }; for (int j = 0; j < ans.length; ++j) { ans[j] %= P; while (ans[j] < 0) ans[j] += P; } if (ans[0] > ans[1]) { long tmp = ans[0]; ans[0] = ans[1]; ans[1] = tmp; } if (ans[0] == ans[1]) { pw.println(ans[0]); } else { pw.println(ans[0] + " " + ans[1]); } } else { pw.println(-1); } } pw.close(); } // x^2=aとなるxを探す static long calc(long a, long mod) { for (int b = 0; b < 100; ++b) { Poly p1 = new Poly(mod); Poly p2 = new Poly(mod);// (x-b)^2-a=0 mod p p2.add(2, 1); p2.add(1, -2 * b); p2.add(0, b * b - a); p1.add(1, 1); p1 = p1.pow((mod - 1) / 2, p2); p1.add(0, -1); Poly gcd = p1.gcd(p2); if (gcd.deg() == 1) { long ans = (-b - inv(gcd.val[1], mod) * gcd.val[0]) % mod; while (ans < 0) ans += mod; return ans; } } throw new AssertionError(); } static class Poly { long[] val = new long[3]; long mod; public Poly(long mod) { this.mod = mod; } void add(int deg, long v) { val[deg] += v; while (val[deg] < 0) val[deg] += mod; val[deg] %= mod; } int deg() { int deg = val.length - 1; while (deg > 0 && val[deg] == 0) --deg; return deg; } Poly mul(Poly p) { Poly ret = new Poly(mod); for (int i = 0; i < this.val.length; ++i) { if (val[i] == 0) continue; for (int j = 0; j < p.val.length; ++j) { if (p.val[j] == 0) continue; ret.add(i + j, this.val[i] * p.val[j]); } } return ret; } Poly mod(Poly p) { Poly ret = new Poly(mod); Poly modPoly = new Poly(mod); for (int i = 0; i < val.length; ++i) { ret.add(i, val[i]); } int max = p.deg(); if (max == 0 && p.val[max] == 0) return new Poly(mod); long rev = (long) inv(p.val[max], mod); for (int i = 0; i < p.val.length; ++i) { modPoly.add(i, p.val[i] * rev); } for (int i = ret.val.length - 1; i >= max; --i) { if (ret.val[i] == 0) continue; long tmp = ret.val[i]; for (int j = 0; j <= max; ++j) { ret.add(i - j, -tmp % mod * modPoly.val[max - j] % mod); } } return ret; } Poly gcd(Poly p) { int deg1 = this.deg(); int deg2 = p.deg(); if (deg1 > deg2) { return p.gcd(this); } if (deg1 == 0 && val[deg1] == 0) return p; return p.mod(this).gcd(this); } Poly pow(long n, Poly polyMod) { int deg = this.deg(); if (val[deg] == 0) return new Poly(mod); Poly ret = new Poly(mod); ret.add(0, 1); Poly pow = new Poly(mod); for (int i = 0; i < val.length; ++i) { pow.add(i, val[i]); } for (; n > 0; n >>= 1, pow = pow.mul(pow), pow = pow.mod(polyMod)) { if (n % 2 == 1) { ret = ret.mul(pow); ret = ret.mod(polyMod); } } return ret; } } public static long inv(long a, long mod) { long b = mod; long p = 1, q = 0; while (b > 0) { long c = a / b; long d; d = a; a = b; b = d % b; d = p; p = q; q = d - c * q; } return p < 0 ? p + mod : p; } // static long inv(long a, long mod) { // return pow(a, mod - 2, mod); // } static long pow(long a, long n, long mod) { long ret = 1; for (; n > 0; n >>= 1, a = (a * a) % mod) { if (n % 2 == 1) { ret = (ret * a) % mod; } } return ret; } static void tr(Object... objects) { System.out.println(Arrays.deepToString(objects)); } }