import std.algorithm, std.conv, std.range, std.stdio, std.string; const mod = 10 ^^ 9 + 7; alias FactorRing!mod mint; void main() { auto rd = readln.split, n = rd[0].to!size_t, k = rd[1].to!long; auto a = readln.split.to!(int[]); auto sfn = toFactorNumberSystem(a); auto efn = addToFactorNumberSystem(sfn, k); auto sr = calcDp(sfn), er = calcDp(efn[0..$-1]); auto lfn = new long[](n); lfn[$-1] = 1; auto lr = calcDp(lfn); writeln(er - sr + lr * mint(efn[$-1])); } auto toFactorNumberSystem(int[] a) { auto n = a.length, bt = BiTree!int(n), r = new long[](n-1); bt[a[$-1]] += 1; foreach (i; 0..n-1) { auto ai = a[$-i-2]; r[i] = bt[0..ai]; bt[ai] += 1; } return r; } auto addToFactorNumberSystem(long[] fn, long k) { auto n = fn.length, r = new long[](n+1); r[0..$-1][] = fn[]; r[0] += k; foreach (i; 0..n) { r[i+1] += r[i]/(i+2); r[i] %= i+2; } return r; } auto calcDp(long[] fn) { auto n = fn.length, dp1 = new mint[][](n+1, 2), dp2 = new mint[](n+1); foreach (i; 0..n) { auto fni = fn[$-i-1], dm = n-i; dp1[i+1][0] = dp1[i][0] * mint(dm+1) + dp2[i] * mint(dm*(dm+1)/2) + dp1[i][1] * fni + mint(fni*(fni-1)/2); dp1[i+1][1] = dp1[i][1] + fni; dp2[i+1] = dp2[i] * (dm+1) + fni; } return dp1[n][0]; } struct BiTree(T) { const size_t n; T[] buf; this(size_t n) { this.n = n; this.buf = new T[](n + 1); } void opIndexOpAssign(string op: "+")(T val, size_t i) { ++i; for (; i <= n; i += i & -i) buf[i] += val; } pure T opSlice(size_t r, size_t l) const { return get(l) - get(r); } pure size_t opDollar() const { return n; } pure T opIndex(size_t i) const { return opSlice(i, i+1); } private: pure T get(size_t i) const { auto s = T(0); for (; i > 0; i -= i & -i) s += buf[i]; return s; } } struct FactorRing(int m, bool pos = false) { long v; @property int toInt() { return v.to!int; } alias toInt this; this(T)(T _v) { v = mod(_v); } ref FactorRing!(m, pos) opAssign(int _v) { v = mod(_v); return this; } pure auto mod(long _v) const { static if (pos) return _v % m; else return (_v % m + m) % m; } pure auto opBinary(string op: "+")(long rhs) const { return FactorRing!(m, pos)(v + rhs); } pure auto opBinary(string op: "-")(long rhs) const { return FactorRing!(m, pos)(v - rhs); } pure auto opBinary(string op: "*")(long rhs) const { return FactorRing!(m, pos)(v * rhs); } pure auto opBinary(string op)(FactorRing!(m, pos) rhs) const if (op == "+" || op == "-" || op == "*") { return opBinary!op(rhs.v); } auto opOpAssign(string op: "+")(long rhs) { v = mod(v + rhs); } auto opOpAssign(string op: "-")(long rhs) { v = mod(v - rhs); } auto opOpAssign(string op: "*")(long rhs) { v = mod(v * rhs); } auto opOpAssign(string op)(FactorRing!(m, pos) rhs) if (op == "+" || op == "-" || op == "*") { return opOpAssign!op(rhs.v); } }