import std.algorithm, std.conv, std.range, std.stdio, std.string; const mod = 10 ^^ 9 + 7; alias FactorRing!(mod, true) mint; const dpi = [2,3,5,7,11,13]; const dci = [4,6,8,9,10,12]; void main() { auto rd = readln.split, n = rd[0].to!long, p = rd[1].to!int, c = rd[2].to!int; auto m = (dpi.maxElement * p + dci.maxElement * c).to!long; auto cpi = calcCombi!mint(dpi, p); auto cci = calcCombi!mint(dci, c); auto ci = new mint[](m+1); if (p == 0) { ci = cci; } else if (c == 0) { ci = cpi; } else { foreach (i, cp; cpi) foreach (j, cc; cci) ci[i+j] += cp * cc; } if (n <= m) { auto ai = new mint[](n+1); foreach (i; 1..n+1) foreach (j; 1..m+1) ai[i] += (i-j > 0 ? ai[i-j] : mint(1)) * ci[j]; writeln(ai[n]); } else { auto ai = new mint[](m+1); foreach (i; 1..m+1) foreach (j; 1..m+1) ai[i] += (i-j > 0 ? ai[i-j] : mint(1)) * ci[j]; auto di = ci.dup; di.reverse(); auto r = kitamasa(di[0..$-1], ai[1..$], n-1); writeln(r); } } T[] calcCombi(T)(const int[] di, int c) { if (c == 0) return []; auto n = di.length.to!int, md = di.maxElement * c; auto dp = new T[][](c+1, md+1), dp2 = new T[][](c+1, md+1); dp[0][0] = T(1); foreach (d; di) { foreach (j; 0..c+1) { dp2[j][] = dp[j][]; foreach (k; 1..j+1) foreach (i; k*d..md+1) dp[j][i] += dp2[j-k][i-k*d]; } } return dp[c]; } T kitamasa(T, U)(T[] a, T[] x, U k) { import std.range; auto n = a.length; auto t = new T[](n*2+1); T[] rec(U k) { auto c = new T[](n); if (k < n) { c[k] = 1; } else { auto b = rec(k/2); t[] = T(0); foreach (i; 0..n) foreach (j; 0..n) t[i+j+(k&1)] += b[i] * b[j]; foreach_reverse (i; n..n*2) foreach (j; 0..n) t[i-n+j] += a[j] * t[i]; c[] = t[0..n][]; } return c; } auto c = rec(k); auto r = T(0); foreach (i; 0..n) r += c[i] * x[i]; return r; } struct FactorRing(int m, bool pos = false) { version(BigEndian) { union { long vl; struct { int vi2; int vi; } } } else { union { long vl; int vi; } } @property int toInt() { return vi; } alias toInt this; this(bool runMod = false)(int v) { static if (runMod) vi = mod(v); else vi = v; } ref FactorRing!(m, pos) opAssign(int v) { vi = v; return this; } pure auto mod(int v) const { static if (pos) return v % m; else return (v % m + m) % m; } pure auto mod(long v) const { static if (pos) return cast(int)(v % m); else return cast(int)((v % m + m) % m); } static if (m < int.max / 2) { pure auto opBinary(string op: "+")(int rhs) const { return FactorRing!(m, pos)(mod(vi + rhs)); } pure auto opBinary(string op: "-")(int rhs) const { return FactorRing!(m, pos)(mod(vi - rhs)); } } else { pure auto opBinary(string op: "+")(int rhs) const { return FactorRing!(m, pos)(mod(vl + rhs)); } pure auto opBinary(string op: "-")(int rhs) const { return FactorRing!(m, pos)(mod(vl - rhs)); } } pure auto opBinary(string op: "*")(int rhs) const { return FactorRing!(m, pos)(mod(vl * rhs)); } pure auto opBinary(string op)(FactorRing!(m, pos) rhs) const if (op == "+" || op == "-" || op == "*") { return opBinary!op(rhs.vi); } static if (m < int.max / 2) { auto opOpAssign(string op: "+")(int rhs) { vi = mod(vi + rhs); } auto opOpAssign(string op: "-")(int rhs) { vi = mod(vi - rhs); } } else { auto opOpAssign(string op: "+")(int rhs) { vi = mod(vl + rhs); } auto opOpAssign(string op: "-")(int rhs) { vi = mod(vl - rhs); } } auto opOpAssign(string op: "*")(int rhs) { vi = mod(vl * rhs); } auto opOpAssign(string op)(FactorRing!(m, pos) rhs) if (op == "+" || op == "-" || op == "*") { return opOpAssign!op(rhs.vi); } }