#include #define show(x) cerr << #x << " = " << x << endl using namespace std; using ll = long long; using pii = pair; using vi = vector; template ostream& operator<<(ostream& os, const vector& v) { os << "sz=" << v.size() << "\n["; for (const auto& p : v) { os << p << ","; } os << "]\n"; return os; } template ostream& operator<<(ostream& os, const pair& p) { os << "(" << p.first << "," << p.second << ")"; return os; } constexpr ll MOD = 1e9 + 7; template constexpr T INF = numeric_limits::max() / 100; struct Student { int x; int a; int b; bool operator>(const Student& s) const { return (a != s.a) ? a > s.a : b > s.b; } }; ostream& operator<<(ostream& os, const Student& s) { os << s.x << " " << s.a << " " << s.b << endl; return os; } template class SegmentTree { public: using BaseAlgebra = Base; using AccMonoid = typename BaseAlgebra::AccMonoid; using OpMonoid = typename BaseAlgebra::OpMonoid; using T = typename BaseAlgebra::T; using F = typename BaseAlgebra::OpMonoid::T; SegmentTree(const int n) : data_num(n), height(__lg(2 * data_num - 1)), size(1 << (1 + height)), half(size >> 1), value(size, AccMonoid::identity()), action(size, OpMonoid::identity()) { assert(n > 0); } SegmentTree(const std::vector& val) : data_num(val.size()), height(__lg(2 * data_num - 1)), size(1 << (1 + height)), half(size >> 1), value(size), action(size, OpMonoid::identity()) { for (int data = 0; data < half; data++) { if (data < data_num) { value[data + half] = val[data]; } else { value[data + half] = AccMonoid::identity(); } } for (int node = half - 1; node >= 1; node--) { value[node] = acc(value[2 * node], value[2 * node + 1]); } } T get(const int a) const { assert(0 <= a and a < data_num); return accumulate(a, a + 1); } void set(const int a, const T& val) { assert(0 <= a and a < data_num); const int node = a + half; value[node] = val; for (int i = node / 2; i > 0; i /= 2) { value[i] = acc(value[2 * i], value[2 * i + 1]); } } T accumulate(const int a, const int b) const // Accumulate (a,b] { assert(0 <= a and a < b and b <= data_num); return accumulateRec(1, 0, half, a, b); } void modify(const int a, const int b, const F& f) // Apply f on (a,b] { assert(0 <= a and a < b and b <= data_num); if (f == OpMonoid::identity()) { return; } modifyRec(1, 0, half, a, b, f); } void print() const { // cout << "#VALUE" << endl; // for (int i = half; i < size; i++) { // cout << value[i] << " "; // } // cout << endl; // cout << "#ACTION" << endl; // for (int i = 1; i < half; i++) { // cout << action[i] << " "; // } // cout << endl; } private: void modifyRec(const int int_index, const int int_left, const int int_right, const int mod_left, const int mod_right, const F& f) { if (mod_left <= int_left and int_right <= mod_right) { value[int_index] = act(f, value[int_index]); action[int_index] = compose(f, action[int_index]); } else if (int_right <= mod_left or mod_right <= int_left) { // Do nothing } else { modifyRec(2 * int_index, int_left, (int_left + int_right) / 2, 0, half, action[int_index]); modifyRec(2 * int_index, int_left, (int_left + int_right) / 2, mod_left, mod_right, f); modifyRec(2 * int_index + 1, (int_left + int_right) / 2, int_right, 0, half, action[int_index]); modifyRec(2 * int_index + 1, (int_left + int_right) / 2, int_right, mod_left, mod_right, f); value[int_index] = acc(value[2 * int_index], value[2 * int_index + 1]); action[int_index] = OpMonoid::identity(); } } T accumulateRec(const int int_index, const int int_left, const int int_right, const int mod_left, const int mod_right) const { if (mod_left <= int_left and int_right <= mod_right) { return value[int_index]; } else if (int_right <= mod_left or mod_right <= int_left) { return AccMonoid::identity(); } else { return act(action[int_index], acc(accumulateRec(2 * int_index, int_left, (int_left + int_right) / 2, mod_left, mod_right), accumulateRec(2 * int_index + 1, (int_left + int_right) / 2, int_right, mod_left, mod_right))); } } const int data_num; // Num of valid data on leaves. const int height; const int size; const int half; vector value; // Tree for value(length: size) vector action; // Tree for action(length: half) bool has_lazy; const AccMonoid acc{}; const OpMonoid compose{}; const BaseAlgebra act{}; }; struct Min_Plus { using T = ll; struct AccMonoid { T operator()(const T& a, const T& b) const { return min(a, b); } static constexpr T identity() { return INF; } }; struct OpMonoid { using T = ll; T operator()(const T& f1, const T& f2) const { return f1 + f2; } static constexpr T identity() { return 0; } }; T operator()(const OpMonoid::T& f, const T& x) const { return f + x; } }; int main() { cin.tie(0); ios::sync_with_stdio(false); int N, M; cin >> N >> M; vector student(N); int three = 0; int two = 0; constexpr int MAX = 100000; SegmentTree seg{vector(MAX + 1, 0)}; SegmentTree seg2{vector(MAX + 1, 0)}; for (int i = 0; i < N; i++) { int X, A, B; cin >> X >> A >> B; student[i] = Student{X, A, B}; if (X == 3) { two++; three++; } else if (X == 1) { seg.modify(0, B + 1, 1); } else if (X == 2) { two++; seg2.modify(0, B + 1, 1); } } if (two >= M) { cout << three << endl; return 0; } sort(student.begin(), student.end(), greater()); int pos = 0; ll minimum = INF; bool flag = true; for (int A = MAX + 1; A >= 0 and pos < N; A--) { const int prev_pos = pos; while (pos < N and student[pos].a >= A) { if (student[pos].x == 2) { three++; seg2.modify(0, student[pos].b + 1, -1); } else if (student[pos].x == 1) { two++; seg.modify(0, student[pos].b + 1, -1); seg2.modify(0, student[pos].b + 1, 1); } else if (student[pos].x == 0) { seg.modify(0, student[pos].b + 1, 1); } pos++; } if (pos == prev_pos) { if (pos == 0 and flag) { flag = false; } else { continue; } } const ll target = M - two; if (target <= 0) { minimum = min(minimum, (ll)three); continue; } else if (target > seg.get(0)) { continue; } int inf = 0; int sup = MAX; while (inf < sup) { const int mid = (inf + sup) / 2; const ll cnt = seg.get(mid); if (cnt >= target) { if (inf == mid) { break; } inf = mid; } else { sup = mid; } } minimum = min(minimum, three + seg2.get(inf)); } cout << minimum << endl; return 0; }