import std.algorithm, std.conv, std.range, std.stdio, std.string; alias point = Point!int; alias grid = Grid!(bool, int); alias graph = Graph!(int, int); alias edge = graph.Edge; void main() { auto rd = readln.split.to!(int[]), r = rd[0], c = rd[1], n = r*c; auto g = grid(r, c); foreach (i; 0..r) { auto s = readln.chomp; foreach (j; 0..c) g[i][j] = s[j] != '.'; } auto idx(point p) { return p.y*c+p.x; } auto h = new edge[][](n+2), nw = 0, nb = 0; foreach (i; 0..r) foreach (j; 0..c) { auto p = point(j, i); if ((i+j) % 2 == 0 && g[i][j]) { ++nw; h[n] ~= edge(n, idx(p), 1); foreach (np; g.sibPoints4(p).filter!(np => g[np])) h[idx(p)] ~= edge(idx(p), idx(np), 1); } else if ((i+j) % 2 == 1 && g[i][j]) { ++nb; h[idx(p)] ~= edge(idx(p), n+1, 1); } } auto w1 = graph.fordFulkerson(h, n, n+1); nw -= w1; nb -= w1; auto w2 = min(nw, nb); nw -= w2; nb -= w2; writeln(w1 * 100 + w2 * 10 + nw + nb); } struct Point(T) { T x, y; pure auto opBinary(string op: "+")(Point!T rhs) const { return Point!T(x + rhs.x, y + rhs.y); } pure auto opBinary(string op: "-")(Point!T rhs) const { return Point!T(x - rhs.x, y - rhs.y); } pure auto opBinary(string op: "*")(Point!T rhs) const { return x * rhs.x + y * rhs.y; } pure auto opBinary(string op: "*")(T a) const { return Point!T(x * a, y * a); } pure auto opBinary(string op: "/")(T a) const { return Point!T(x / a, y / a); } pure auto hypot2() const { return x ^^ 2 + y ^^ 2; } } struct Grid(T, U) { import std.algorithm, std.conv, std.range, std.traits, std.typecons; const sibs4 = [Point!U(-1, 0), Point!U(0, -1), Point!U(1, 0), Point!U(0, 1)]; const sibs8 = [Point!U(-1, 0), Point!U(-1, -1), Point!U(0, -1), Point!U(1, -1), Point!U(1, 0), Point!U(1, 1), Point!U(0, 1), Point!U(-1, 1)]; T[][] m; const size_t rows, cols; mixin Proxy!m; this(size_t r, size_t c) { rows = r; cols = c; m = new T[][](rows, cols); } this(T[][] s) { rows = s.length; cols = s[0].length; m = s; } pure auto dup() const { return Grid(m.map!(r => r.dup).array); } ref pure auto opIndex(Point!U p) { return m[p.y][p.x]; } ref pure auto opIndex(size_t y) { return m[y]; } ref pure auto opIndex(size_t y, size_t x) const { return m[y][x]; } static if (isAssignable!T) { auto opIndexAssign(T v, Point!U p) { return m[p.y][p.x] = v; } auto opIndexAssign(T v, size_t y, size_t x) { return m[y][x] = v; } auto opIndexOpAssign(string op, V)(V v, Point!U p) { return mixin("m[p.y][p.x] " ~ op ~ "= v"); } auto opIndexOpAssign(string op, V)(V v, size_t y, size_t x) { return mixin("m[y][x] " ~ op ~ "= v"); } } pure auto validPoint(Point!U p) { return p.x >= 0 && p.x < cols && p.y >= 0 && p.y < rows; } pure auto points() const { return rows.to!U.iota.map!(y => cols.to!U.iota.map!(x => Point!U(x, y))).joiner; } pure auto sibPoints4(Point!U p) { return sibs4.map!(s => p + s).filter!(p => validPoint(p)); } pure auto sibPoints8(Point!U p) { return sibs8.map!(s => p + s).filter!(p => validPoint(p)); } } template Graph(Wt, Node, Wt _inf = 10 ^^ 9, Node _sent = Node.max) { import std.algorithm, std.container, std.conv; const inf = _inf, sent = _sent; struct Edge { Node src, dst; Wt cap; } struct EdgeR { Node src, dst; Wt cap, flow; Node rev; } Wt fordFulkerson(Edge[][] g, Node s, Node t) { auto n = g.length; auto adj = withRev(g, n); auto visited = new bool[](n); Wt augment(Node u, Wt cur) { if (u == t) return cur; visited[u] = true; foreach (ref e; adj[u]) { if (!visited[e.dst] && e.cap > e.flow) { auto f = augment(e.dst, min(e.cap - e.flow, cur)); if (f > 0) { e.flow += f; adj[e.dst][e.rev].flow -= f; return f; } } } return 0; } Wt flow; for (;;) { visited[] = false; auto f = augment(s, inf); if (f == 0) break; flow += f; } return flow; } EdgeR[][] withRev(Edge[][] g, size_t n) { auto r = new EdgeR[][](n); foreach (gi; g) foreach (e; gi) { r[e.src] ~= EdgeR(e.src, e.dst, e.cap, 0, cast(Node)(r[e.dst].length)); r[e.dst] ~= EdgeR(e.dst, e.src, 0, 0, cast(Node)(r[e.src].length) - 1); } return r; } }