import std.algorithm, std.conv, std.range, std.stdio, std.string; void main() { auto rd1 = readln.split.to!(int[]), n = rd1[0], m = rd1[1]; auto uf = UnionFind!size_t(n), d = new int[](n); foreach (_; 0..m) { auto rd2 = readln.split.to!(int[]), a = rd2[0], b = rd2[1]; uf.unite(a, b); ++d[a]; ++d[b]; } auto b = d.count!"a % 2 == 1"; writeln(uf.groups.count!"a.length > 1" == 1 && (b == 0 || b == 2) ? "YES" : "NO"); } struct UnionFind(T) { import std.algorithm, std.range; T[] p; // parent const T s; // sentinel const T n; T countForests; // number of forests T[] countNodes; // number of nodes in forests this(T n) { this.n = n; s = n; p = new T[](n); p[] = s; countForests = n; countNodes = new T[](n); countNodes[] = 1; } T opIndex(T i) { if (p[i] == s) { return i; } else { p[i] = this[p[i]]; return p[i]; } } bool unite(T i, T j) { auto pi = this[i], pj = this[j]; if (pi != pj) { p[pj] = pi; --countForests; countNodes[pi] += countNodes[pj]; return true; } else { return false; } } auto countNodesOf(T i) { return countNodes[this[i]]; } bool isSame(T i, T j) { return this[i] == this[j]; } auto groups() { auto g = new T[][](n); foreach (i; 0..n) g[this[i]] ~= i; return g.filter!(l => !l.empty); } }