// use std::ops::{Index, IndexMut}; // use std::cmp::{Ordering, min, max}; // use std::collections::{BinaryHeap, BTreeMap}; // use std::collections::btree_map::Entry::{Occupied, Vacant}; // use std::clone::Clone; fn getline() -> String{ let mut res = String::new(); std::io::stdin().read_line(&mut res).ok(); res } macro_rules! readl { ($t: ty) => { { let s = getline(); s.trim().parse::<$t>().unwrap() } }; ($( $t: ty),+ ) => { { let s = getline(); let mut iter = s.trim().split(' '); ($(iter.next().unwrap().parse::<$t>().unwrap(),)*) } }; } macro_rules! readlvec { ($t: ty) => { { let s = getline(); let iter = s.trim().split(' '); iter.map(|x| x.parse().unwrap()).collect::>() } } } macro_rules! mvec { ($v: expr, $s: expr) => { vec![$v; $s] }; ($v: expr, $s: expr, $($t: expr),*) => { vec![mvec!($v, $($t),*); $s] }; } macro_rules! debug { ($x: expr) => { println!("{}: {:?}", stringify!($x), $x) } } fn printiter<'a, T>(v: &'a T) where &'a T: std::iter::IntoIterator, <&'a T as std::iter::IntoIterator>::Item: std::fmt::Display { for (i,e) in v.into_iter().enumerate() { if i != 0 { print!(" "); } print!("{}", e); } println!(""); } type Cost = i64; #[derive(Clone)] struct Edge { to: usize, cost: Cost, } impl Ord for Edge { fn cmp(&self, other: &Edge) -> std::cmp::Ordering { (-self.cost).cmp(&(-other.cost)) } } impl PartialOrd for Edge { fn partial_cmp(&self, other: &Edge) -> Option { Some(self.cmp(other)) } } impl Eq for Edge {} impl PartialEq for Edge { fn eq(&self, other: &Edge) -> bool { self.cost == other.cost } } #[derive(Clone)] struct Graph { adj: Vec>, } impl std::ops::Index for Graph { type Output = Vec; fn index(&self, i: usize) -> &Vec { &self.adj[i] } } impl std::ops::IndexMut for Graph { fn index_mut<'a>(&'a mut self, i: usize) -> &'a mut Vec { &mut self.adj[i] } } impl Graph { fn new(n: usize) -> Graph{ Graph { adj: vec![vec![]; n], } } fn size(&self) -> usize{ self.adj.capacity() } fn add_edge(&mut self, from: usize, to_: usize, cost_: Cost) { self.adj[from].push(Edge{to: to_, cost: cost_}); } fn add_uedge(&mut self, from: usize, to_: usize, cost_: Cost) { self.add_edge(from, to_, cost_); self.add_edge(to_, from, cost_); } } struct Random { x: i32, y: i32, z: i32, w: i32, t: i32, } impl Random { fn new() -> Random { Random { x: 400, y: 362436069, z: 521288629, w: 886751233, t: 1, } } fn next(&mut self) -> i32 { self.t = self.x^(self.x << 11); self.x = self.y; self.y = self.z; self.z = self.w; self.w = (self.w ^ (self.w>>19)) ^ (self.t ^ (self.t>>8)); self.w&0x7fffffff } } use std::collections::HashSet; // struct Solver { // n: usize, // m: usize, // g: Graph, // } // impl Solver { // fn solve() -> String { // let mut rnd = Random::new(); // for _ in 0..1000 { // let color: Vec<_> = (0..n).map(|_| rnd.next()%5).collect(); // let mut dp = vec![1<<5; n]; // } // } // } impl Graph { fn solve(&self, p: usize, mask: usize, memo: &mut Vec>>, color: &Vec) -> bool { // debug!(mask); if let Some(res) = memo[p][mask] { res } else if mask == (1<<5)-1 { p == 0 } else { let res = self[p].iter().fold(false, |x, y|{ x || if (mask>>color[y.to])&1 == 0 { self.solve(y.to, mask|(1< = (0..n).map(|_| rnd.next()%5).collect(); let mut dp = vec![vec![None; 1<<5]; n]; let res = g[0].iter().fold(false, |x, y| { x||g.solve(y.to, 1<