import std.algorithm, std.conv, std.range, std.stdio, std.string; import std.typecons; // Tuple, Nullable, BigFlags alias mint = FactorRing!9; void main() { auto t = readln.chomp.to!int; auto f3 = new int[](16); f3[0] = 1; foreach (i; 1..16) f3[i] = f3[i-1]*3; auto f3m = new mint[](16); foreach (i; 0..16) f3m[i] = mint(f3[i], true); auto split3(int i) { auto j = 0; while (i > 0 && i%3 == 0) { ++j; i /= 3; } return tuple(j, mint(i, true)); } foreach (_; 0..t) { auto rd = readln.splitter; auto n = rd.front.to!int; rd.popFront(); auto x = rd.front.to!int; rd.popFront(); auto a = rd.front.to!int; rd.popFront(); auto b = rd.front.to!int; rd.popFront(); auto m = rd.front.to!int; auto ans = mint(0), s = 0; auto r = x; auto c3 = 0, co = mint(1); foreach (i; 0..n) { ans += mint(r%10, true) * f3m[c3] * co; s += r%10; auto r1 = split3(n-i-1), r2 = split3(i+1); c3 += r1[0] - r2[0]; co *= r1[1] / r2[1]; r = ((r ^ a) + b) % m; } if (s == 0) writeln(0); else writeln(ans == 0 ? 9 : ans); } } struct FactorRing(int m, bool pos = false) { version(BigEndian) { union { long vl; struct { int vi2; int vi; } } } else { union { long vl; int vi; } } static init() { return FactorRing!(m, pos)(0); } @property int toInt() { return vi; } alias toInt this; this(int v) { vi = v; } this(int v, bool runMod) { vi = runMod ? mod(v) : v; } this(long v) { vi = mod(v); } ref FactorRing!(m, pos) opAssign(int v) { vi = v; return this; } pure auto mod(int v) const { static if (pos) return v % m; else return (v % m + m) % m; } pure auto mod(long v) const { static if (pos) return cast(int)(v % m); else return cast(int)((v % m + m) % m); } static if (!pos) { pure auto opUnary(string op: "-")() const { return FactorRing!(m, pos)(mod(-vi)); } } static if (m < int.max / 2) { pure auto opBinary(string op: "+")(int rhs) const { return FactorRing!(m, pos)(mod(vi + rhs)); } pure auto opBinary(string op: "-")(int rhs) const { return FactorRing!(m, pos)(mod(vi - rhs)); } } else { pure auto opBinary(string op: "+")(int rhs) const { return FactorRing!(m, pos)(mod(vl + rhs)); } pure auto opBinary(string op: "-")(int rhs) const { return FactorRing!(m, pos)(mod(vl - rhs)); } } pure auto opBinary(string op: "*")(int rhs) const { return FactorRing!(m, pos)(mod(vl * rhs)); } pure auto opBinary(string op)(FactorRing!(m, pos) rhs) const if (op == "+" || op == "-" || op == "*") { return opBinary!op(rhs.vi); } static if (m < int.max / 2) { auto opOpAssign(string op: "+")(int rhs) { vi = mod(vi + rhs); } auto opOpAssign(string op: "-")(int rhs) { vi = mod(vi - rhs); } } else { auto opOpAssign(string op: "+")(int rhs) { vi = mod(vl + rhs); } auto opOpAssign(string op: "-")(int rhs) { vi = mod(vl - rhs); } } auto opOpAssign(string op: "*")(int rhs) { vi = mod(vl * rhs); } auto opOpAssign(string op)(FactorRing!(m, pos) rhs) if (op == "+" || op == "-" || op == "*") { return opOpAssign!op(rhs.vi); } pure auto opBinary(string op: "/")(FactorRing!(m, pos) rhs) { return FactorRing!(m, pos)(mod(vl * rhs.inv.vi)); } pure auto opBinary(string op: "/")(int rhs) { return opBinary!op(FactorRing!(m, pos)(rhs)); } auto opOpAssign(string op: "/")(FactorRing!(m, pos) rhs) { vi = mod(vl * rhs.inv.vi); } auto opOpAssign(string op: "/")(int rhs) { return opOpAssign!op(FactorRing!(m, pos)(rhs)); } pure auto inv() const { int x = vi, a, b; exEuclid(x, m, a, b); return FactorRing!(m, pos)(mod(a)); } } pure T exEuclid(T)(T a, T b, ref T x, ref T y) { auto g = a; x = 1; y = 0; if (b != 0) { g = exEuclid(b, a % b, y, x); y -= a / b * x; } return g; }