#include #define REP(i, n) for (int i = 0; (i) < int(n); ++ (i)) #define REP_R(i, n) for (int i = int(n) - 1; (i) >= 0; -- (i)) using ll = long long; using namespace std; template struct lazy_propagation_segment_tree { // on monoids static_assert (is_same::value, ""); typedef typename Monoid::underlying_type underlying_type; typedef typename OperatorMonoid::underlying_type operator_type; const Monoid mon; const OperatorMonoid op; int n; vector a; vector f; lazy_propagation_segment_tree() = default; lazy_propagation_segment_tree(int a_n, underlying_type initial_value = Monoid().unit(), Monoid const & a_mon = Monoid(), OperatorMonoid const & a_op = OperatorMonoid()) : mon(a_mon), op(a_op) { n = 1; while (n <= a_n) n *= 2; a.resize(2 * n - 1, mon.unit()); fill(a.begin() + (n - 1), a.begin() + ((n - 1) + a_n), initial_value); // set initial values REP_R (i, n - 1) a[i] = mon.append(a[2 * i + 1], a[2 * i + 2]); // propagate initial values f.resize(max(0, (2 * n - 1) - n), op.identity()); } void point_set(int i, underlying_type z) { assert (0 <= i and i < n); point_set(0, 0, n, i, z); } void point_set(int i, int il, int ir, int j, underlying_type z) { if (i == n + j - 1) { // 0-based a[i] = z; } else if (ir <= j or j+1 <= il) { // nop } else { range_apply(2 * i + 1, il, (il + ir) / 2, 0, n, f[i]); range_apply(2 * i + 2, (il + ir) / 2, ir, 0, n, f[i]); f[i] = op.identity(); point_set(2 * i + 1, il, (il + ir) / 2, j, z); point_set(2 * i + 2, (il + ir) / 2, ir, j, z); a[i] = mon.append(a[2 * i + 1], a[2 * i + 2]); } } void range_apply(int l, int r, operator_type z) { assert (0 <= l and l <= r and r <= n); range_apply(0, 0, n, l, r, z); } void range_apply(int i, int il, int ir, int l, int r, operator_type z) { if (l <= il and ir <= r) { // 0-based a[i] = op.apply(z, a[i]); if (i < f.size()) f[i] = op.compose(z, f[i]); } else if (ir <= l or r <= il) { // nop } else { range_apply(2 * i + 1, il, (il + ir) / 2, 0, n, f[i]); range_apply(2 * i + 2, (il + ir) / 2, ir, 0, n, f[i]); f[i] = op.identity(); range_apply(2 * i + 1, il, (il + ir) / 2, l, r, z); range_apply(2 * i + 2, (il + ir) / 2, ir, l, r, z); a[i] = mon.append(a[2 * i + 1], a[2 * i + 2]); } } underlying_type range_concat(int l, int r) { assert (0 <= l and l <= r and r <= n); return range_concat(0, 0, n, l, r); } underlying_type range_concat(int i, int il, int ir, int l, int r) { if (l <= il and ir <= r) { // 0-based return a[i]; } else if (ir <= l or r <= il) { return mon.unit(); } else { return op.apply(f[i], mon.append( range_concat(2 * i + 1, il, (il + ir) / 2, l, r), range_concat(2 * i + 2, (il + ir) / 2, ir, l, r))); } } }; struct max_monoid { typedef ll underlying_type; ll unit() const { return INT_MIN; } ll append(ll a, ll b) const { return max(a, b); } }; struct plus_operator_monoid { typedef ll underlying_type; typedef ll target_type; ll identity() const { return 0; } ll apply(underlying_type a, target_type b) const { return a + b; } ll compose(underlying_type a, underlying_type b) const { return a + b; } }; int main() { // input int n; scanf("%d", &n); vector t(n - 1); REP (i, n - 1) scanf("%d", &t[i]); // prepare lazy_propagation_segment_tree segtree(n - 1); REP (i, n - 1) { segtree.point_set(i, t[i] + (n - 1 - i) * 3); } // serve int m; scanf("%d", &m); while (m --) { int l, r, d; scanf("%d%d%d", &l, &r, &d); -- l; segtree.range_apply(l, r, d); ll result = segtree.range_concat(0, n - 1); // output printf("%lld\n", result); } return 0; }