import java.io.*; import java.util.*; class Main { static final int I=100000; static ArrayList[] g; static int[][]mat; static void add(int a, int b, int c){ g[a].add((long)b<<32|c); mat[a][b]+=c; } @SuppressWarnings("unchecked") public static void main(String[] args) { MyScanner sc = new MyScanner(); out = new PrintWriter(new BufferedOutputStream(System.out)); int n=sc.nextInt(); int[]b=new int[n],c=new int[n]; g=new ArrayList[3*n+2]; Arrays.setAll(g,x->new ArrayList()); mat=new int[3*n+2][3*n+2]; for(int i=0;i queue = new LinkedList(); queue.add(s); visited[s] = true; parent[s]=-1; // Standard BFS Loop while (queue.size()!=0) { int u = queue.poll(); for (int v=0; v 0) { queue.add(v); parent[v] = u; visited[v] = true; } } } // If we reached sink in BFS starting from source, then // return true, else false return (visited[t] == true); } // Returns tne maximum flow from s to t in the given graph int fordFulkerson(int graph[][], int s, int t) { int u, v; // Create a residual graph and fill the residual graph // with given capacities in the original graph as // residual capacities in residual graph // Residual graph where rGraph[i][j] indicates // residual capacity of edge from i to j (if there // is an edge. If rGraph[i][j] is 0, then there is // not) int V=graph.length; int rGraph[][] = new int[V][V]; for (u = 0; u < V; u++) for (v = 0; v < V; v++) rGraph[u][v] = graph[u][v]; // This array is filled by BFS and to store path int parent[] = new int[V]; int max_flow = 0; // There is no flow initially // Augment the flow while tere is path from source // to sink while (bfs(rGraph, s, t, parent)) { // Find minimum residual capacity of the edhes // along the path filled by BFS. Or we can say // find the maximum flow through the path found. int path_flow = Integer.MAX_VALUE; for (v=t; v!=s; v=parent[v]) { u = parent[v]; path_flow = Math.min(path_flow, rGraph[u][v]); } // update residual capacities of the edges and // reverse edges along the path for (v=t; v != s; v=parent[v]) { u = parent[v]; rGraph[u][v] -= path_flow; rGraph[v][u] += path_flow; } // Add path flow to overall flow max_flow += path_flow; } // Return the overall flow return max_flow; } }