#include using namespace std; struct CentroidPathDecomposition { struct Centroid { int ParIndex, ParDepth, Deep; vector< int > node; Centroid(int idx, int dep, int deep) : ParIndex(idx), ParDepth(dep), Deep(deep) {} inline size_t size() { return (node.size()); } inline int &operator[](int k) { return (node[k]); } inline pair< int, int > Up() { return (make_pair(ParIndex, ParDepth)); } }; vector< vector< int > > graph; vector< int > SubTreeSize, NextPath; vector< int > TreeIndex, TreeDepth; vector< Centroid > Centroids; void BuildSubTreeSize() { stack< pair< int, int > > s; s.emplace(0, -1); while(!s.empty()) { auto p = s.top(); s.pop(); if(~SubTreeSize[p.first]) { NextPath[p.first] = -1; for(auto &to : graph[p.first]) { if(p.second == to) continue; SubTreeSize[p.first] += SubTreeSize[to]; if(NextPath[p.first] == -1 || SubTreeSize[NextPath[p.first]] < SubTreeSize[to]) { NextPath[p.first] = to; } } } else { s.push(p); SubTreeSize[p.first] = 1; for(auto &to : graph[p.first]) { if(p.second != to) s.emplace(to, p.first); } } } } void BuildPath() { stack< pair< int, int > > s; Centroids.emplace_back(-1, -1, 0); s.emplace(0, -1); TreeIndex[0] = 0; while(!s.empty()) { auto p = s.top(); s.pop(); TreeDepth[p.first] = (int) Centroids[TreeIndex[p.first]].size(); for(auto &to : graph[p.first]) { if(p.second == to) continue; if(to == NextPath[p.first]) { // Centroid-Path TreeIndex[to] = TreeIndex[p.first]; } else { // Not Centroid-Path TreeIndex[to] = (int) Centroids.size(); Centroids.emplace_back(TreeIndex[p.first], TreeDepth[p.first], Centroids[TreeIndex[p.first]].Deep + 1); } s.emplace(to, p.first); } Centroids[TreeIndex[p.first]].node.emplace_back(p.first); } } void AddEdge(int x, int y) { graph[x].push_back(y); graph[y].push_back(x); } virtual void Build() { BuildSubTreeSize(); BuildPath(); } inline size_t size() { return (Centroids.size()); } inline pair< int, int > Information(int idx) { return (make_pair(TreeIndex[idx], TreeDepth[idx])); } inline Centroid &operator[](int k) { return (Centroids[k]); } inline int LCA(int a, int b) { int TreeIdxA, TreeDepthA, TreeIdxB, TreeDepthB; tie(TreeIdxA, TreeDepthA) = Information(a); tie(TreeIdxB, TreeDepthB) = Information(b); while(TreeIdxA != TreeIdxB) { if(Centroids[TreeIdxA].Deep > Centroids[TreeIdxB].Deep) { tie(TreeIdxA, TreeDepthA) = Centroids[TreeIdxA].Up(); } else { tie(TreeIdxB, TreeDepthB) = Centroids[TreeIdxB].Up(); } } if(TreeDepthA > TreeDepthB) swap(TreeDepthA, TreeDepthB); return (Centroids[TreeIdxA][TreeDepthA]); } inline virtual void query(int a, int b, const function< void(int, int, int) > &f) { int TreeIdxA, TreeDepthA, TreeIdxB, TreeDepthB; tie(TreeIdxA, TreeDepthA) = Information(a); tie(TreeIdxB, TreeDepthB) = Information(b); while(TreeIdxA != TreeIdxB) { if(Centroids[TreeIdxA].Deep > Centroids[TreeIdxB].Deep) { f(TreeIdxA, 0, TreeDepthA + 1); tie(TreeIdxA, TreeDepthA) = Centroids[TreeIdxA].Up(); } else { f(TreeIdxB, 0, TreeDepthB + 1); tie(TreeIdxB, TreeDepthB) = Centroids[TreeIdxB].Up(); } } if(TreeDepthA > TreeDepthB) swap(TreeDepthA, TreeDepthB); f(TreeIdxA, TreeDepthA, TreeDepthB + 1); } CentroidPathDecomposition(int SZ) { graph.resize(SZ); SubTreeSize.assign(SZ, -1); NextPath.resize(SZ); TreeIndex.resize(SZ); TreeDepth.resize(SZ); } }; struct TreeArray : CentroidPathDecomposition { TreeArray(int sz) : CentroidPathDecomposition(sz) {} vector< int > index; void Build() { CentroidPathDecomposition::Build(); int ptr = 0; for(auto ¢roid : Centroids) { index.emplace_back(ptr); ptr += centroid.size(); } } inline int get(int a) { auto p = Information(a); return (index[p.first] + p.second); } inline void query(int a, int b, const function< void(int, int) > &f) { int TreeIdxA, TreeDepthA, TreeIdxB, TreeDepthB; tie(TreeIdxA, TreeDepthA) = Information(a); tie(TreeIdxB, TreeDepthB) = Information(b); while(TreeIdxA != TreeIdxB) { if(Centroids[TreeIdxA].Deep > Centroids[TreeIdxB].Deep) { f(index[TreeIdxA], index[TreeIdxA] + TreeDepthA + 1); tie(TreeIdxA, TreeDepthA) = Centroids[TreeIdxA].Up(); } else { f(index[TreeIdxB], index[TreeIdxB] + TreeDepthB + 1); tie(TreeIdxB, TreeDepthB) = Centroids[TreeIdxB].Up(); } } if(TreeDepthA > TreeDepthB) swap(TreeDepthA, TreeDepthB); f(index[TreeIdxA] + TreeDepthA + 1, index[TreeIdxA] + TreeDepthB + 1); } }; const int mod = 1e9 + 7; struct Matrix { int a[2][2]; Matrix operator+(const Matrix &kj) { Matrix ret; for(int i = 0; i < 2; i++) { for(int j = 0; j < 2; j++) { ret.a[i][j] = a[i][j] + kj.a[i][j]; ret.a[i][j] %= mod; } } return (ret); } Matrix operator*(const Matrix &kj) { Matrix ret = Matrix::Zero(); for(int i = 0; i < 2; i++) { for(int j = 0; j < 2; j++) { for(int k = 0; k < 2; k++) { ret.a[i][j] = (ret.a[i][j] + 1LL * a[i][k] * kj.a[k][j]) % mod; } } } return (ret); } Matrix operator^(int n) { Matrix ret = Matrix::I(); Matrix x = *this; while(n > 0) { if(n & 1) (ret = ret * x); x = x * x; n >>= 1; } return (ret); } static Matrix Zero() { Matrix ret; memset(ret.a, 0, sizeof(ret.a)); return (ret); } static Matrix I() { Matrix ret; memset(ret.a, 0, sizeof(ret.a)); for(int i = 0; i < 2; i++) ret.a[i][i] = 1; return (ret); } }; struct SegmentTree { vector< Matrix > seg, add; int sz; SegmentTree(int n) { sz = 1; while(sz < n) sz <<= 1; seg.assign(2 * sz - 1, Matrix::I()); } Matrix query(int a, int b, int k, int l, int r) { if(a >= r || b <= l) return (Matrix::I()); if(a <= l && r <= b) return (seg[k]); Matrix L = query(a, b, 2 * k + 1, l, (l + r) >> 1); Matrix R = query(a, b, 2 * k + 2, (l + r) >> 1, r); return (L * R); } void update(int k, Matrix x) { k += sz - 1; seg[k] = x; while(k > 0) { k = (k - 1) >> 1; seg[k] = seg[2 * k + 1] * seg[2 * k + 2]; } } Matrix query(int a, int b) { return (query(a, b, 0, 0, sz)); } }; int main() { int N, X[100000], Y[100000]; cin >> N; TreeArray g(N); for(int i = 1; i < N; i++) { cin >> X[i] >> Y[i]; g.AddEdge(X[i], Y[i]); } g.Build(); for(int i = 1; i < N; i++) { int a = g.get(X[i]); int b = g.get(Y[i]); if(a > b) swap(X[i], Y[i]); } SegmentTree seg(N); int Q; cin >> Q; while(Q--) { char x; cin >> x; if(x == 'x') { int v; cin >> v; ++v; Matrix m; cin >> m.a[0][0] >> m.a[0][1] >> m.a[1][0] >> m.a[1][1]; seg.update(g.get(Y[v]), m); } else { int y, z; cin >> y >> z; Matrix mat = Matrix::I(); g.query(y, z, [&](int a, int b) { mat = seg.query(a, b) * mat; }); cout << mat.a[0][0] << " " << mat.a[0][1] << " " << mat.a[1][0] << " " << mat.a[1][1] << endl; } } }