#pragma GCC optimize ("O3") #pragma GCC target ("avx") #include "bits/stdc++.h" // define macro "/D__MAI" using namespace std; typedef long long int ll; #define debug(v) {printf("L%d %s > ",__LINE__,#v);cout<<(v)< ",__LINE__,#v);for(auto e:(v)){cout< ",__LINE__,#m);for(int x=0;x<(w);x++){cout<<(m)[x]<<" ";}cout<\n",__LINE__,#m);for(int y=0;y<(h);y++){for(int x=0;x<(w);x++){cout<<(m)[y][x]<<" ";}cout< ostream& operator <<(ostream &o, const pair p) { o << "(" << p.first << ":" << p.second << ")"; return o; } template T& maxset(T& to, const T& val) { return to = max(to, val); } template T& minset(T& to, const T& val) { return to = min(to, val); } void bye(string s, int code = 0) { cout << s << endl; exit(code); } mt19937_64 randdev(8901016); inline ll rand_range(ll l, ll h) { return uniform_int_distribution(l, h)(randdev); } #if defined(_WIN32) || defined(_WIN64) #define getchar_unlocked _getchar_nolock #define putchar_unlocked _putchar_nolock #elif defined(__GNUC__) #else #define getchar_unlocked getchar #define putchar_unlocked putchar #endif namespace { #define isvisiblechar(c) (0x21<=(c)&&(c)<=0x7E) class MaiScanner { public: template void input_integer(T& var) { var = 0; T sign = 1; int cc = getchar_unlocked(); for (; cc<'0' || '9'>(int& var) { input_integer(var); return *this; } inline MaiScanner& operator>>(long long& var) { input_integer(var); return *this; } inline MaiScanner& operator>>(string& var) { int cc = getchar_unlocked(); for (; !isvisiblechar(cc); cc = getchar_unlocked()); for (; isvisiblechar(cc); cc = getchar_unlocked()) var.push_back(cc); return *this; } template void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; } }; class MaiPrinter { public: template void output_integer(T var) { if (var == 0) { putchar_unlocked('0'); return; } if (var < 0) putchar_unlocked('-'), var = -var; char stack[32]; int stack_p = 0; while (var) stack[stack_p++] = '0' + (var % 10), var /= 10; while (stack_p) putchar_unlocked(stack[--stack_p]); } inline MaiPrinter& operator<<(char c) { putchar_unlocked(c); return *this; } inline MaiPrinter& operator<<(int var) { output_integer(var); return *this; } inline MaiPrinter& operator<<(long long var) { output_integer(var); return *this; } inline MaiPrinter& operator<<(char* str_p) { while (*str_p) putchar_unlocked(*(str_p++)); return *this; } inline MaiPrinter& operator<<(const string& str) { const char* p = str.c_str(); const char* l = p + str.size(); while (p < l) putchar_unlocked(*p++); return *this; } template void join(IT begin, IT end, char sep = '\n') { for (auto it = begin; it != end; ++it) *this << *it << sep; } }; } MaiScanner scanner; MaiPrinter printer; class Graph { public: size_t n; vector> vertex_to; Graph(size_t n = 1) :n(n), vertex_to(n) {} void connect(int from, int to) { vertex_to[(size_t)from].emplace_back(to); vertex_to[(size_t)to].emplace_back(from); } void resize(size_t _n) { n = _n; vertex_to.resize(_n); } }; class llmod { private: ll val_; inline ll cut(ll v) const { return ((v%MOD) + MOD) % MOD; } public: static const ll MOD = MD; // <= llmod() : val_(0) {} llmod(ll num) :val_(cut(num)) {} llmod(const llmod& lm) : val_(lm.val_) {} inline operator ll() const { return val_; } inline ll operator *() const { return val_; } inline llmod& operator=(const llmod& lm) { val_ = lm.val_; return *this; } inline llmod& operator=(ll v) { val_ = cut(v); return *this; } inline llmod& operator+=(ll v) { val_ = cut(val_ + v); return *this; } inline llmod& operator+=(const llmod& l) { val_ = cut(val_ + l.val_); return *this; } inline llmod& operator-=(ll v) { val_ = cut(val_ - v); return *this; } inline llmod& operator-=(const llmod& l) { val_ = cut(val_ - l.val_); return *this; } inline llmod& operator*=(ll v) { val_ = cut(val_ * v); return *this; } inline llmod& operator*=(const llmod& l) { val_ = cut(val_ * l.val_); return *this; } inline llmod& operator++() { val_ = (val_ + 1) % MOD; return *this; } inline llmod operator++(int) { llmod t = *this; val_ = (val_ + 1) % MOD; return t; } }; inline ostream& operator<<(ostream& os, const llmod& l) { os << *l; return os; } inline llmod operator+(llmod t, const llmod& r) { return t += r; } inline llmod operator-(llmod t, const llmod& r) { return t -= r; } inline llmod operator*(llmod t, const llmod& r) { return t *= r; } // MEMO : 逆元...powm(n,MD-2) llmod pow(llmod x, ll p) { llmod y = 1; while (0 < p) { if (p % 2) y *= x; x *= x; p /= 2; } return y; } inline llmod& operator/=(llmod& l, const llmod& r) { return l *= pow(r, llmod::MOD - 2); } template //typedef int T; class SegmentTreeQ { int size_; vector data_; const function func_; const T zero_; public: SegmentTreeQ(int n, function f, T z) : func_(f), zero_(z) { size_ = 8; while (size_ < n) size_ <<= 1; data_.resize(size_ * 2, zero_); } void fill(T val) { std::fill(data_.begin(), data_.end(), val); } inline T get_val(int index) const { return data_[index + size_]; } void set_val(int index, const T e) { index += size_; data_[index] = e; while (1 < index) { data_[index >> 1] = func_(data_[index], data_[index ^ 1]); // TODO : この部分の計算順序は正確か? index >>= 1; } } inline int get_range(int begin, int end) const { T rl = zero_, rr = zero_; begin += size_; end += size_; for (; begin < end; begin >>= 1, end >>= 1) { if (begin & 1) rl = func_(data_[begin++], rl); if (end & 1) rr = func_(rr, data_[--end]); } return func_(rl, rr); } }; template // typedef double T; class Matrix { public: size_t height_, width_; valarray data_; Matrix(size_t height, size_t width) :height_(height), width_(width), data_(height*width) {} Matrix(size_t height, size_t width, const valarray& data) :height_(height), width_(width), data_(data) {} inline T& operator()(size_t y, size_t x) { return data_[y*width_ + x]; } inline T operator() (size_t y, size_t x) const { return data_[y*width_ + x]; } inline T& at(size_t y, size_t x) { return data_[y*width_ + x]; } inline T at(size_t y, size_t x) const { return data_[y*width_ + x]; } inline void resize(size_t h, size_t w) { height_ = h; width_ = w; data_.resize(h*w); } inline void resize(size_t h, size_t w, T val) { height_ = h; width_ = w; data_.resize(h*w, val); } inline void fill(T val) { data_ = val; } Matrix& setDiag(T val) { for (size_t i = 0, en = min(width_, height_); i < en; ++i)at(i, i) = val; return *this; } void print(ostream& os) { os << "- - -" << endl; // << setprecision(3) for (size_t y = 0; y < height_; ++y) { for (size_t x = 0; x < width_; ++x) { os << setw(7) << at(y, x) << ' '; }os << endl; } } valarray> to_valarray() const { valarray> work(height_); for (size_t i = 0; i < height_; ++i) { auto &v = work[i]; v.resize(height_); for (size_t j = 0; j < width_; ++j) v[j] = at(i, j); } return work; } // mathematics Matrix pow(long long); double det() const; T tr(); Matrix& transpose_self(); Matrix transpose() const; struct LU { size_t size; vector pivot; vector elem; }; }; // IO template inline ostream& operator << (ostream& os, Matrix mat) { mat.print(os); return os; } // 掛け算 template Matrix multiply(const Matrix& mat1, const Matrix& mat2) { assert(mat1.width_ == mat2.height_); Matrix result(mat1.height_, mat2.width_); for (size_t i = 0; i < mat1.height_; i++) { for (size_t j = 0; j < mat2.width_; j++) { for (size_t k = 0; k < mat1.width_; k++) { result(i, j) += mat1(i, k) * mat2(k, j); } } } return result; } template valarray multiply(const Matrix& mat1, const valarray& vec2) { assert(mat1.width_ == vec2.size()); valarray result(mat1.height_); for (size_t i = 0, j; i < mat1.height_; i++) { for (j = 0; j < mat1.width_; j++) { result[i] += mat1(i, j) * vec2[j]; } } return result; } template inline Matrix& operator*=(Matrix& mat1, Matrix& mat2) { mat1 = multiply(mat1, mat2); return mat1; } template inline Matrix operator*(Matrix& mat1, Matrix& mat2) { return multiply(mat1, mat2); } // スカラー template inline Matrix& operator+=(Matrix& mat, T val) { mat.data_ += val; return mat; } template inline Matrix& operator*=(Matrix& mat, T val) { mat.data_ *= val; return mat; } template inline Matrix& operator/=(Matrix& mat, T val) { mat.data_ /= val; return mat; } template inline Matrix& operator^=(Matrix& mat, T val) { mat.data_ ^= val; return mat; } // 行列 template inline Matrix& operator+=(Matrix& mat1, Matrix& mat2) { mat1.data_ += mat2.data_; return mat1; } template inline Matrix operator+(Matrix& mat1, Matrix& mat2) { return Matrix(mat1.height_, mat1.width_, mat1.data_ + mat2.data_); } template Matrix Matrix::pow(long long p) { assert(height_ == width_); Matrix a = *this; Matrix b(height_, height_); b.setDiag(1); while (0 < p) { if (p % 2) { b *= a; } a *= a; p /= 2; } return b; } template class SparseTable { public: int size; vector log2; vector data; vector dp; SparseTable(int size) :size(size), log2(size + 1), data(size) { // for fast calculate log2 for (int i = 2; i <= size; ++i) { log2[i] = log2[i >> 1] + 1; } dp.resize(size*(log2[size] + 1)); } inline T& operator[](size_t i) { return data[i]; } inline T operator[](size_t i)const { return data[i]; } void build() { int l, i, f, b; for (i = 0; i < size; i++) { dp[i] = i; } for (l = 1; (1 << l) <= size; l++) { for (i = 0; i + (1 << l) <= size; i++) { f = dp[i + size * (l - 1)]; b = dp[(i + (1 << (l - 1))) + size * (l - 1)]; dp[i + size * l] = (data[f] <= data[b]) ? f : b; // minimum } } } // range [l,r) int getminrangeIdx(int l, int r) const { int lg = log2[r - l]; int i1 = dp[l + size * lg]; int i2 = dp[r - (1 << lg) + size * lg]; return (data[i1] <= data[i2]) ? i1 : i2; // minimum } }; class LCATable { const Graph& graph_; // 構築時に参照するだけ vector visited_; vector visited_inv_; SparseTable depth_; public: LCATable(const Graph& g, int root = 0) :graph_(g), visited_(g.n * 2), visited_inv_(g.n), depth_(g.n * 2) { build(root); } int _tour_dfs(int idx, int from = -1, int step = 0, int dep = 0) { depth_[step] = dep; visited_inv_[idx] = step; visited_[step] = idx; for (int to : graph_.vertex_to[idx]) { if (to == from) continue; step = _tour_dfs(to, idx, ++step, dep + 1); depth_[step] = dep; visited_[step] = idx; } return ++step; } void build(int root = 0) { _tour_dfs(root); depth_.build(); } inline int operator()(int u, int v) { return visited_inv_[u] <= visited_inv_[v] ? visited_[depth_.getminrangeIdx(visited_inv_[u], visited_inv_[v])] : operator()(v, u); } }; ll m, n, kei, qu; Graph graph; int hl[100010], hlid[100010], hlsize; int hl_dec(int index = 0, int from = -1) { int cnt = 1; vector partial_size(graph.vertex_to[index].size()); int i = 0; for (auto to : graph.vertex_to[index]) { if (from == to) { ++i; continue; } int sz = hl_dec(to, index); cnt += sz; partial_size[i] = sz; ++i; } if (cnt > 1) { auto it = max_element(ALL(partial_size)); int j = distance(it, partial_size.begin()); hl[index] = hl[graph.vertex_to[index][j]]; hlid[index] = hlid[graph.vertex_to[index][j]] + 1; }else{ hl[index] = hlsize++; } return cnt; } int main() { scanner >> n; m = n - 1; graph.resize(n); repeat(i, n) { int a, b; scanner >> a >> b; graph.connect(a, b); } hl_dec(); vector>> hl_segs; const Matrix one(2, 2, {1,0,0,1}); repeat(i, hlsize) { hl_segs.emplace_back(hl[i], [](Matrix x, Matrix y) {return x * y; }, one); } LCATable lca(graph); // ============================== int qu; scanner >> qu; repeat(lop, qu) { string type; scanner >> type; if (type[0] == 'x') { int i; ll a, b, c, d; scanner >> i >> a >> b >> c >> d; auto mat = Matrix(2, 2, { a,b,c,d }); hl_segs[hl[i]].set_val(hlid[i], mat); } else { int i, j, k; scanner >> i >> j; k = lca(i, j); // 積順序を考慮しないのであれば, // [i..root]の積 × [j..root]の積 ÷ [k..root] ÷ [k..root] // 行列なので考える必要がある. // - 逆方向に演算するセグ木メソッドの実装 // - 逆行列用のセグ木を用意 // [i..root]の積の計算に用いるHL分解パスを跨いでいく処理が未実装 } } return 0; }