#include #define VARNAME(x) #x #define show(x) cerr << #x << " = " << x << endl using namespace std; using ll = long long; using ld = long double; template vector Vec(int n, T v) { return vector(n, v); } template auto Vec(int n, Args... args) { auto val = Vec(args...); return vector(n, move(val)); } template ostream& operator<<(ostream& os, const vector& v) { os << "sz:" << v.size() << "\n["; for (const auto& p : v) { os << p << ","; } os << "]\n"; return os; } template ostream& operator<<(ostream& os, const pair& p) { os << "(" << p.first << "," << p.second << ")"; return os; } constexpr ll MOD = (ll)1e9 + 7LL; constexpr ld PI = static_cast(3.1415926535898); template constexpr T INF = numeric_limits::max() / 10; struct Matrix { Matrix(const int N) : N(N), table(N, vector(N, 0)) {} const int N; const vector& operator[](const int m) const { return table[m]; } vector& operator[](const int m) { return table[m]; } Matrix operator*(const Matrix& mat) const { Matrix ans(N); for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { for (int k = 0; k < N; k++) { ans[i][j] += table[i][k] * mat[k][j]; } } } return ans; } static Matrix Unit(const int N) { Matrix mat(N); for (int i = 0; i < N; i++) { mat[i][i] = 1; } return mat; } vector> table; }; Matrix power(const Matrix& mat, const ll n) { if (n == 0) { return Matrix::Unit(mat.N); } if (n % 2 == 1) { return power(mat, n - 1) * mat; } else { const auto pp = power(mat, n / 2); return pp * pp; } } int main() { cin.tie(0); ios::sync_with_stdio(false); int R, C; ll T; cin >> R >> C >> T; int sx, sy, gx, gy; cin >> sy >> sx >> gy >> gx; const int S = sx + sy * C; const int G = gx + gy * C; const int N = R * C; Matrix mat(N); vector> ok(R, vector(C, true)); for (int i = 0; i < R; i++) { string s; cin >> s; for (int j = 0; j < C; j++) { ok[i][j] = s[j] == '.'; } } constexpr int dir[] = {-1, 0, 1, 0, -1}; for (int i = 0; i < N; i++) { const int y = i / C; const int x = i % C; if (not ok[y][x]) { mat[i][i] = 1; continue; } vector nei; for (int d = 0; d < 4; d++) { const int newy = y + dir[d]; const int newx = x + dir[d + 1]; if (newy >= 0 and newy < R and newx >= 0 and newx < C and ok[newy][newx]) { nei.push_back(newy * C + newx); } } if (nei.empty()) { mat[i][i] = 1; } else { const ld p = 1.0 / nei.size(); for (const int e : nei) { mat[i][e] = p; } } } const Matrix ans = power(mat, T); cout << fixed << setprecision(15) << ans[S][G] << endl; return 0; }