#include "bits/stdc++.h" using namespace std; typedef long long ll; typedef pair pii; typedef pair pll; const int INF = 1e9; const ll LINF = 1e18; template ostream& operator << (ostream& out,const pair& o){ out << "(" << o.first << "," << o.second << ")"; return out; } template ostream& operator << (ostream& out,const vector V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << " ";} return out; } template ostream& operator << (ostream& out,const vector > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; } template ostream& operator << (ostream& out,const map mp){ out << "{ "; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << ":" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << ", "; } out << " }"; return out; } /* 問題文============================================================ 太郎君はそろばんが苦手で、特に、珠の位置によってその珠が表す数が違うことに納得ができなかった。 そこで、太郎君は二次元の各場所に珠があるかどうかのみで表す整数を決めるような新しい方法を考えだした。 以下ではわかりやすさを優先して、抽象化して説明する。 R 行 C 列のマス目があり、各マスには珠があるかどうかである。 珠は合計で RC−1 個ある。つまり、1 マスだけ珠がないマスが存在する。 各盤面に対して 0 以上の整数を対応させる。 また、対応させる整数の最大値を K とすると、0 以上 K 以下の全ての整数に対して対応する盤面が存在しなければいけない。 ただし、そろばんはひっくり返すことはできないが、 回転することができるため、回転して一致する盤面に対しては同じ整数を対応させなくてはいけない。 R と C が与えられるので、対応させる整数の最大値 K の最大値を求めるプログラムを書いてください。 ================================================================= 解説============================================================= ================================================================ */ ll solve(){ ll res = 0; ll R,C; cin >> R >> C; if(R!=C){ if(R*C%2==0)res = R*C/2-1; else res = R*C/2; }else{ if(R*C%2==0)res = R*C/4-1; else res = R*C/4; } return res; } int main(void) { cin.tie(0); ios_base::sync_with_stdio(false); cout << solve() << endl; return 0; }