#include using namespace std; typedef long long signed int LL; typedef long long unsigned int LU; #define incID(i, l, r) for(int i = (l) ; i < (r); i++) #define incII(i, l, r) for(int i = (l) ; i <= (r); i++) #define decID(i, l, r) for(int i = (r) - 1; i >= (l); i--) #define decII(i, l, r) for(int i = (r) ; i >= (l); i--) #define inc(i, n) incID(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec(i, n) decID(i, 0, n) #define dec1(i, n) decII(i, 1, n) #define inII(v, l, r) ((l) <= (v) && (v) <= (r)) #define inID(v, l, r) ((l) <= (v) && (v) < (r)) #define PB push_back #define EB emplace_back #define MP make_pair #define FI first #define SE second #define PQ priority_queue #define ALL(v) v.begin(), v.end() #define RALL(v) v.rbegin(), v.rend() #define FOR(it, v) for(auto it = v.begin(); it != v.end(); ++it) #define RFOR(it, v) for(auto it = v.rbegin(); it != v.rend(); ++it) template bool setmin(T & a, T b) { if(b < a) { a = b; return true; } else { return false; } } template bool setmax(T & a, T b) { if(b > a) { a = b; return true; } else { return false; } } template bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } } template bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } } template T gcd(T a, T b) { return (b == 0 ? a : gcd(b, a % b)); } template T lcm(T a, T b) { return a / gcd(a, b) * b; } // ---- ---- template void mat_prod(LL a[N][N], LL b[N][N], LL c[N][N], LL MOD) { // a = b * c; LL d[N][N]; inc(i, N) { inc(j, N) { d[i][j] = 0; } } inc(i, N) { inc(j, N) { inc(k, N) { (d[i][j] += b[i][k] * c[k][j]) %= MOD; } } } inc(i, N) { inc(j, N) { a[i][j] = d[i][j]; } } return; } template void mat_exp(LL a[N][N], LL b[N][N], LL c, LL MOD) { // a = b ^ c; LL t[60][N][N]; inc(i, N) { inc(j, N) { t[0][i][j] = b[i][j]; } } inc(i, 60 - 1) { mat_prod(t[i + 1], t[i], t[i], MOD); } inc(i, N) { inc(j, N) { a[i][j] = 0; } } inc(i, N) { a[i][i] = 1; } inc(i, 60) { if((c >> i) % 2 == 1) { mat_prod(a, a, t[i], MOD); } } return; } // ---- LL n, b, d, sw, tw, MOD = 1e9 + 7; LL m[31], w[31]; int main() { cin >> n >> b >> d; LL a[3][3] = { { d + 1, d, 0 }, { 0, 1, 1 }, { 0, 0, 1 } }; LL v[3][3] = { { d , 0, 0 }, { 2, 0, 0 }, { 1, 0, 0 } }; mat_exp(a, a, b - 1, MOD); mat_prod(a, a, v, MOD); tw = a[0][0]; inc1(i, 30) { m[i] = m[i - 1] * (d + 1) + d; w[i] = w[i - 1] * (d + 1) + i * d; } while(n) { int x = 0; incII(i, 0, 30) { if(m[i] > n) { break; } x = i; } assert(m[x] <= n && m[x + 1] > n); if((n + 1) % (m[x] + x + 1) == 0) { LL y = (n + 1) / (m[x] + x + 1); n -= y * (m[x] + x + 1) - 1; sw += y * (w[x] + x + 1) - (x + 1); } LL y = n / (m[x] + x + 1); n -= y * (m[x] + x + 1); sw += y * (w[x] + x + 1); } sw %= MOD; cout << (tw + MOD - sw) % MOD << endl; return 0; }