#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include #include #include using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } template inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } typedef vector vi; typedef vector vvi; typedef vector vll; typedef vector vs; typedef pair pii; typedef long long ll; typedef pair pll; typedef unsigned long long ull; //repetition //------------------------------------------ #define REP(i,a,b) for(int i=(a);i<(b);++i) #define rep(i,n) REP(i,0,n) #define rrep(i,n) for(int i=(n);i>=0;i--) #define VEC_2D(a,b) vector >(a, vector(b, 0)) #define ALL(a) (a).begin(),(a).end() #define RALL(a) (a).rbegin(), (a).rend() #define pb push_back #define mp make_pair #define INF (1001000000) #define SZ(a) int((a).size()) #define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i) #define EXIST(s,e) ((s).find(e)!=(s).end()) #define SORT(c) sort((c).begin(),(c).end()) #define UNIQ(c) (c).erase(unique((c).begin(),(c).end()), (c).end()); #define MOD 1000000007LL #define MS(v,n) memset((v),(n),sizeof(v)) //input #define VEC(type, c, n) std::vector c(n);for(auto& i:c)std::cin>>i; //output #define P(p) cout<<(p)< T gcd(T x, T y) { if (y == 0) return x; else return gcd(y, x%y); } template T lcm(T a, T b) { return a / gcd(a, b) * b; } template bool is_prime(T n) { for (int i = 2; i * i <= n; i++) { if (n % i == 0) return false; } return n != 1; } map prime_factor(int n) { map res; for (int i = 2; i * i <= n; i++) { while (n % i == 0) { ++res[i]; n /= i; } } if (n != 1) res[n] = 1; return res; } int extgcd(int a, int b, int& x, int& y) {// int d = a; if (b != 0) { d = extgcd(b, a%b, y, x); y -= (a / b)*x; } else { x = 1; y = 0; } return d; } ll mod_pow(ll x, ll n, ll mod) { if (n == 0) return 1; ll res = mod_pow(x * x % mod, n / 2, mod); if (n & 1) res = res * x % mod; return res; } vector split(const string &str, char delim) { vector res; size_t current = 0, found; while ((found = str.find_first_of(delim, current)) != string::npos) { res.push_back(string(str, current, found - current)); current = found + 1; } res.push_back(string(str, current, str.size() - current)); return res; } bool is_kadomatsu(int a, int b, int c) { if (a == b || a == c || b == c)return false; if (a > b && c > b) return true; if (a < b && c < b)return true; return false; } struct UF { int n; vi d; UF() {} UF(int n) :n(n), d(n, -1) {} int root(int v) { if (d[v] < 0) return v; return d[v] = root(d[v]); } bool same(int a, int b) { return root(a) == root(b); } bool unite(int x, int y) { x = root(x); y = root(y); if (x == y) return false; if (size(x) < size(y)) swap(x, y); d[x] += d[y]; d[y] = x; return true; } int size(int v) { return -d[root(v)]; } }; vector divisor(int n) { if (n == 1) return{}; vi res; for (int i = 1; i*i <= n; i++) { if (n%i == 0) { res.emplace_back(i); if (i != 1 && i != n / i)res.emplace_back(n / i); } } return res; } struct Bellmanford { int n; struct edge { int from, to, cost; }; vector E; vi d; Bellmanford(int n) :n(n), d(n) { E.resize(n); } void add_edge(int x, int y, int cost) { edge e; e.from = x; e.to = y; e.cost = cost; E.push_back(e); } void shortest_path(int s) { rep(i, n)d[i] = INF; d[s] = 0; while (true) { bool update = false; for (auto e : E) { if (d[e.from] != INF && d[e.to] > d[e.from] + e.cost) { d[e.to] = d[e.from] + e.cost; update = true; } } if (!update) break; } } }; struct Dijkstra { int n; struct edge { int to; ll cost; }; vector> G; vll d; Dijkstra(int n) :n(n), d(n) { G.resize(n); } void add_edge(int x, int y, ll cost) { edge e; e.to = y; e.cost = cost; G[x].push_back(e); } void shortest_path(int s) { rep(i, n)d[i] = 100000000000000000; d[s] = 0; priority_queue, vector>, greater>> que; que.push(make_pair(0, s)); while (!que.empty()) { pii p = que.top(); que.pop(); int v = p.second; if (d[v] < p.first) continue; for (auto e : G[v]) { if (d[e.to] > d[v] + e.cost) { d[e.to] = d[v] + e.cost; que.push(make_pair(d[e.to], e.to)); } } } } }; struct Segmenttree { int n; vector dat; Segmenttree(int n_) { n = 1; while (n < n_) n *= 2; dat = vector(2 * n - 1, 0); } void add(int idx, ll val) {//0-indexed idx += n - 1; dat[idx]+=val; while (idx > 0) { idx = (idx - 1) / 2; dat[idx]+=val; } } int query(int a, int b) { return query_seg(a, b, 0, 0, n); } int query_seg(int a, int b, int k, int l, int r) { if (r <= a || b <= l) return 0; if (a <= l && r <= b)return dat[k]; else { return query_seg(a, b, k * 2 + 1, l, (l + r) / 2)+query_seg(a, b, k * 2 + 2, (l + r) / 2, r); } } }; struct Trie { Trie *next[26]; Trie() { fill(next, next + 26, (Trie *)0); } void insert(char *s) { if (*s == '\0') return; if (this->next[*s - 'a'] == NULL) { this->next[*s - 'a'] = new Trie(); } this->next[*s - 'a']->insert(s + 1); } bool find(char *s) { if (*s == '\0') return true; if (this->next[*s - 'a'] == NULL) { return false; } return this->next[*s - 'a']->find(s + 1); } }; //------------------------------------ struct edge { int to, cap, rev; }; vector G[2555]; bool used[2555]; void add_edge(int from, int to, int cap) { edge e; e.to = to; e.cap = cap; e.rev = G[to].size(); G[from].push_back(e); e.to = from; e.cap = 0; e.rev = G[from].size() - 1; G[to].push_back(e); } int fdfs(int v, int t, int f) { if (v == t)return f; used[v] = true; rep(i, G[v].size()) { edge &e = G[v][i]; if (!used[e.to] && e.cap > 0) { int d = fdfs(e.to, t, min(f, e.cap)); if (d > 0) { e.cap -= d; G[e.to][e.rev].cap+= d; return d; } } } return 0; } int max_flow(int s, int t) { int flow = 0; while (true) { MS(used, 0); int f = fdfs(s, t, INF); if (f == 0)return flow; flow += f; } } int main(){ string s; cin >> s; s.replace(ALL(s), 'I','1'); s.replace(ALL(s), 'l', '1'); s.replace(ALL(s), 'o', '0'); s.replace(ALL(s), 'o', '0'); P(s); return 0; }